New model for capturing the variations of fertilizer-induced emission factors of N2O

被引:53
作者
Zhou, Feng [1 ]
Shang, Ziyin [1 ]
Zeng, Zhenzhong [1 ]
Piao, Shilong [1 ]
Ciais, Philippe [2 ]
Raymond, Peter A. [3 ]
Wang, Xuhui [1 ]
Wang, Rong [2 ]
Chen, Minpeng [4 ]
Yang, Changliang [5 ]
Tao, Shu [1 ]
Zhao, Yue [6 ]
Meng, Qian [7 ]
Gao, Shuoshuo [1 ]
Mao, Qi [1 ]
机构
[1] Peking Univ, Sinofrance Inst Earth Syst Sci, Lab Earth Surface Proc, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[2] CEA CNRS UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France
[3] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA
[4] Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100193, Peoples R China
[5] Yunnan Univ, Res Inst Engn Technol, Kunming, Peoples R China
[6] Chinese Acad Environm Planning, Dept Water Environm Planning, Beijing, Peoples R China
[7] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
nitrous oxide; agricultural soils; emission factor; nonlinear response; Bayesian inference; data mining; NITROUS-OXIDE EMISSIONS; NONLINEAR RESPONSE; PADDY FIELDS; TEMPERATURE; CHINA; SOILS; DENITRIFICATION; MANAGEMENT; INVENTORY; CLIMATE;
D O I
10.1002/2014GB005046
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accumulating evidence indicates that N2O emission factors (EFs) vary with nitrogen additions and environmental variations. Yet the impact of the latter was often ignored by previous EF determinations. We developed piecewise statistical models (PMs) to explain how the N2O EFs in agricultural soils depend upon various predictors such as climate, soil attributes, and agricultural management. The PMs are derived from a new Bayesian Recursive Regression Tree algorithm. The PMs were applied to the case of EFs from agricultural soils in China, a country where large EF spatial gradients prevail. The results indicate substantial improvements of the PMs compared with other EF determinations. First, PMs are able to reproduce a larger fraction of the variability of observed EFs for upland grain crops (84%, n=381) and paddy rice (91%, n=161) as well as the ratio of EFs to nitrogen application rates (73%, n=96). The superior predictive accuracy of PMs is further confirmed by evaluating their predictions against independent EF measurements (n=285) from outside China. Results show that the PMs calibrated using Chinese data can explain 75% of the variance. Hence, the PMs could be reliable for upscaling of N2O EFs and fluxes for regions that have a phase space of predictors similar to China. Results from the validated models also suggest that climatic factors regulate the heterogeneity of EFs in China, explaining 69% and 85% of their variations for upland grain crops and paddy rice, respectively. The corresponding N2O EFs in 2008 are 0.840.18% (as N2O-N emissions divided by the total N input) for upland grain crops and 0.650.14% for paddy rice, the latter being twice as large as the Intergovernmental Panel on Climate Change Tier 1 defaults. Based upon these new estimates of EFs, we infer that only 22% of current arable land could achieve a potential reduction of N2O emission of 50%.
引用
收藏
页码:885 / 897
页数:13
相关论文
共 50 条
  • [31] Nitrification derived N2O emission increases but denitrification derived N2O emission decreases with N enrichment in both topsoil and subsoil
    Song, Lei
    Pan, Junxiao
    Wang, Jinsong
    Yan, Yingjie
    Niu, Shuli
    CATENA, 2023, 222
  • [32] Effects of Different Irrigation Water Types, N Fertilizer Types, and Soil Moisture Contents on N2O Emissions and N Fertilizer Transformations in Soils
    Shang, Fangze
    Ren, Shumei
    Yang, Peiling
    Chi, Yanbing
    Xue, Yandong
    WATER AIR AND SOIL POLLUTION, 2016, 227 (07)
  • [33] Procyanidins-Mediated Biological Denitrification Inhibition Reduces Fertilizer-Induced N2O Emissions in Acidic Tea Plantation Soils
    Han, Xing
    Yu, Haiyang
    Meng, Miaoling
    Ge, Chaorong
    Zheng, Ningguo
    Yao, Huaiying
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 1927 - 1936
  • [34] Effect of different biochar and fertilizer types on N2O and NO emissions
    Nelissen, Victoria
    Saha, Biplob Kumar
    Ruysschaert, Greet
    Boeckx, Pascal
    SOIL BIOLOGY & BIOCHEMISTRY, 2014, 70 : 244 - 255
  • [35] Effects of long-term conservation tillage on N2 and N2O emission rates and N2O emission microbial pathways in Mollisols
    Zhao, Jinxi
    Hu, Yanyu
    Gao, Wanjing
    Chen, Huaihai
    Yang, Miaoyin
    Quan, Zhi
    Fang, Yunting
    Chen, Xin
    Xie, Hongtu
    He, Hongbo
    Zhang, Xudong
    Lu, Caiyan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
  • [36] Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil
    Jorgensen, Christian Juncher
    Elberling, Bo
    SOIL BIOLOGY & BIOCHEMISTRY, 2012, 53 : 9 - 17
  • [37] Uncertainty propagation analysis of an N2O emission model at the plot and landscape scale
    Nol, L.
    Heuvelink, G. B. M.
    Veldkamp, A.
    de Vries, W.
    Kros, J.
    GEODERMA, 2010, 159 (1-2) : 9 - 23
  • [38] UV-induced N2O emission from plants
    Bruhn, Dan
    Albert, Kristian R.
    Mikkelsen, Teis N.
    Ambus, Per
    ATMOSPHERIC ENVIRONMENT, 2014, 99 : 206 - 214
  • [39] Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season
    Wang, Rui
    Pan, Zhanlei
    Liu, Yan
    Yao, Zhisheng
    Wang, Jing
    Zheng, Xunhua
    Zhang, Chong
    Ju, Xiaotang
    Wei, Huanhuan
    Butterbach-Bahl, Klaus
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2022, 335
  • [40] Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils
    Krol, D. J.
    Carolan, R.
    Minet, E.
    McGeough, K. L.
    Watson, C. J.
    Forrestal, P. J.
    Lanigan, G. J.
    Richards, K. G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 568 : 327 - 338