Implementing the Nelder-Mead simplex algorithm with adaptive parameters

被引:648
作者
Gao, Fuchang [2 ]
Han, Lixing [1 ]
机构
[1] Univ Michigan Flint, Dept Math, Flint, MI 48502 USA
[2] Univ Idaho, Dept Math, Moscow, ID 83844 USA
关键词
Nelder-Mead method; Simplex; Polytope; Adaptive parameter; Optimization; OPTIMIZATION; CONVERGENCE; SEARCH;
D O I
10.1007/s10589-010-9329-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first prove that the expansion and contraction steps of the Nelder-Mead simplex algorithm possess a descent property when the objective function is uniformly convex. This property provides some new insights on why the standard Nelder-Mead algorithm becomes inefficient in high dimensions. We then propose an implementation of the Nelder-Mead method in which the expansion, contraction, and shrink parameters depend on the dimension of the optimization problem. Our numerical experiments show that the new implementation outperforms the standard Nelder-Mead method for high dimensional problems.
引用
收藏
页码:259 / 277
页数:19
相关论文
共 21 条