On the positivity of the fundamental polynomials for generalized Hermite-Fejer interpolation on the Chebyshev nodes

被引:2
作者
Smith, SJ [1 ]
机构
[1] La Trobe Univ, Div Math, Bendigo, Vic 3552, Australia
关键词
D O I
10.1006/jath.1998.3244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the fundamental polynomials for (0, 1,..., 2m + 1) Hermite-Fejer interpolation on the zeros of the Chebyshev polynomials of the first kind are nonnegative for -1 less than or equal to x less than or equal to 1, thereby generalising a well-known property of the original Hermite-Fejer interpolation method. As an application of the result, Korovkin's theorem on monotone operators is used to present a new proof that the (0, 1,..., 2m + 1) Hermite-Fejer interpolation polynomials of f is an element of C[-1, 1], based on n Chebyshev nodes, converge uniformly to f as n --> infinity. (C) 1999 Academic Press.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 50 条
[31]   ON THE APPROXIMATION OF THE CONTINUOUS-FUNCTIONS BY HERMITE-FEJER INTERPOLATION POLYNOMIALS [J].
XIE, TF .
CHINESE ANNALS OF MATHEMATICS SERIES B, 1981, 2 (04) :463-474
[32]   EXTENSIONS OF HERMITE-FEJER INTERPOLATION [J].
MILLS, TM .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (06) :A580-A580
[33]   CONVERGENCE OF HERMITE-FEJER INTERPOLATION BASED ON ROOTS OF LEGENDRE POLYNOMIALS [J].
SZABADOS, J .
ACTA SCIENTIARUM MATHEMATICARUM, 1973, 34 (01) :367-370
[34]   ON THE CONVERGENCE OF HERMITE-FEJER INTERPOLATION [J].
HERMAN, T .
ACTA MATHEMATICA HUNGARICA, 1985, 45 (1-2) :167-177
[35]   Higher-Order Hermite-Fejer Interpolation for Stieltjes Polynomials [J].
Jung, Hee Sun ;
Sakai, Ryozi .
JOURNAL OF APPLIED MATHEMATICS, 2013,
[36]   Mean convergence of Hermite-Fejer interpolation based on the zeros of Lascenov polynomials [J].
Shi, YG .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (01) :117-128
[37]   EXTENDED HERMITE-FEJER INTERPOLATION PROCESS [J].
BERMAN, DL .
ACTA MATHEMATICA HUNGARICA, 1986, 47 (1-2) :109-115
[38]   Necessary conditions of convergence of Hermite-Fejer interpolation polynomials for exponential weights [J].
Jung, HS .
JOURNAL OF APPROXIMATION THEORY, 2005, 136 (01) :26-44
[39]   MEAN CONVERGENCE OF HERMITE-FEJER TYPE INTERPOLATION ON AN ARBITRARY SYSTEM OF NODES [J].
Feng Yongping (Guangzhou University ;
China)Cui Junzhi (Academy of Chinese Sciences ;
China) .
AnalysisinTheoryandApplications, 2004, (03) :199-214
[40]   Orthonormal polynomials for generalized Freud-type weights and higher-order Hermite-Fejer interpolation polynomials [J].
Kasuga, T ;
Sakai, R .
JOURNAL OF APPROXIMATION THEORY, 2004, 127 (01) :1-38