On the positivity of the fundamental polynomials for generalized Hermite-Fejer interpolation on the Chebyshev nodes

被引:2
作者
Smith, SJ [1 ]
机构
[1] La Trobe Univ, Div Math, Bendigo, Vic 3552, Australia
关键词
D O I
10.1006/jath.1998.3244
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the fundamental polynomials for (0, 1,..., 2m + 1) Hermite-Fejer interpolation on the zeros of the Chebyshev polynomials of the first kind are nonnegative for -1 less than or equal to x less than or equal to 1, thereby generalising a well-known property of the original Hermite-Fejer interpolation method. As an application of the result, Korovkin's theorem on monotone operators is used to present a new proof that the (0, 1,..., 2m + 1) Hermite-Fejer interpolation polynomials of f is an element of C[-1, 1], based on n Chebyshev nodes, converge uniformly to f as n --> infinity. (C) 1999 Academic Press.
引用
收藏
页码:338 / 344
页数:7
相关论文
共 50 条
[21]   On Hermite-Fejer Interpolation [J].
Rababah, Abedallah ;
Hammouch, Zakia .
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
[22]   ON INTERPOLATION POLYNOMIALS OF THE HERMITE-FEJER TYPE-II [J].
GOODENOUGH, SJ ;
MILLS, TM .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (02) :283-291
[23]   ON THE DIVERGENCE OF HERMITE-FEJER TYPE INTERPOLATION WITH EQUIDISTANT NODES [J].
MILLS, TM ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 49 (01) :101-110
[24]   Hermite-Fejer and Grunwald Interpolation at Generalized Laguerre Zeros [J].
De Bonis, Maria Carmela ;
Kubayi, David .
FILOMAT, 2019, 33 (15) :4855-4863
[25]   HERMITE-FEJER INTERPOLATION SEQUENCES [J].
FREUD, G .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2) :175-178
[26]   A NEW ESTIMATE FOR THE APPROXIMATION OF FUNCTIONS BY HERMITE-FEJER INTERPOLATION POLYNOMIALS [J].
GOODENOUGH, SJ ;
MILLS, TM .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (03) :253-260
[28]   CONVERGENCE OF HERMITE-FEJER INTERPOLATION [J].
VERTESI, POH .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1971, 22 (1-2) :151-&
[29]   ON HERMITE-FEJER TYPE INTERPOLATION [J].
KNOOP, HB ;
STOCKENBERG, B .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1983, 28 (01) :39-51
[30]   ON HERMITE-FEJER TYPE INTERPOLATION [J].
HERMANN, T .
ACTA MATHEMATICA HUNGARICA, 1984, 44 (3-4) :389-400