Enhancement of the carbohydrate content in Spirulina by applying CO2, thermoelectric fly ashes and reduced nitrogen supply

被引:22
作者
Braga, Vagner da Silva [1 ]
Moreira, Juliana Botelho [1 ]
Vieira Costa, Jorge Alberto [2 ]
de Morais, Michele Greque [1 ]
机构
[1] Fed Univ Rio Grande, Coll Chem & Food Engn, Lab Microbiol & Biochem, POB 474, BR-96203900 Rio Grande, RS, Brazil
[2] Fed Univ Rio Grande, Coll Chem Ansd Food Engn, Lab Biochem Engn, POB 474, BR-96203900 Rio Grande, RS, Brazil
关键词
Cyanobacteria; Carbohydrates; Industrial waste; CARBON-DIOXIDE FIXATION; CHLORELLA-FUSCA; CHEMICAL-COMPOSITION; POWER-PLANT; GROWTH; MICROALGAE; PLATENSIS; GAS; CULTIVATION; BIOFIXATION;
D O I
10.1016/j.ijbiomac.2018.12.037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study focused on evaluating whether the injection of CO2, which is associated with the use of thermoelectric fly ashes and a reduced supply of nitrogen, affects the production of intracellular carbohydrates from Spirulina. For this purpose, the addition of 0.25 g L-1 of NaNO3, along with a 10% (v v(-1)) of CO2 injection, a flow rate of 0.3 vvm for 1 or 5 min, as well as 0, 120 and 160 ppm of fly ashes, was studied. The assays with 120 ppm of fly ashes presented the best kinetic parameters and CO2 biofixation rate, regardless of the CO2 injection time. Mean while, the experiments with 120 and 160 ppm of fly ash and CO2 injection for 1 min presented 63.3 and 61.0% (w w(-1)) of carbohydrates, respectively. Thus, this study represents an important strategy to increase the accumulation of carbohydrates in Spirulina, with potential application in the production of bioethanol. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1241 / 1247
页数:7
相关论文
共 44 条
[1]   Energy values and chemical composition of spirulina (Spirulina platensis) evaluated with broilers [J].
Alvarenga, Renata Ribeiro ;
Rodrigues, Paulo Borges ;
Cantarelli, Vinicius de Souza ;
Zangeronimo, Marcio Gilberto ;
da Silva Junior, Jose Walter ;
da Silva, Leonardo Rafael ;
dos Santos, Luziane Moreira ;
Pereira, Luciano Jose .
REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (05) :992-996
[2]  
Bailey J.E., 1986, BIOCH ENG FUNDAMENTA
[3]   Micro-algae as a source of protein [J].
Becker, E. W. .
BIOTECHNOLOGY ADVANCES, 2007, 25 (02) :207-210
[4]   Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass [J].
Braga, Vagner da Silva ;
da Silveira Mastrantonio, Duna Joanol ;
Vieira Costa, Jorge Alberto ;
de Morais, Michele Greque .
BIORESOURCE TECHNOLOGY, 2018, 269 :221-226
[5]  
Carmouze JP, 1994, METABOLISMO ECOSSIST
[6]   RAPID COLORIMETRIC DETERMINATION OF NITRATE IN PLANT-TISSUE BY NITRATION OF SALICYLIC-ACID [J].
CATALDO, DA ;
HAROON, M ;
SCHRADER, LE ;
YOUNGS, VL .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1975, 6 (01) :71-80
[7]   Microalgae-based carbohydrates for biofuel production [J].
Chen, Chun-Yen ;
Zhao, Xin-Qing ;
Yen, Hong-Wei ;
Ho, Shih-Hsin ;
Cheng, Chieh-Lun ;
Lee, Duu-Jong ;
Bai, Feng-Wu ;
Chang, Jo-Shu .
BIOCHEMICAL ENGINEERING JOURNAL, 2013, 78 :1-10
[8]  
Chisti Y., 2004, HDB MICROALGAL CULTU, P57
[9]   Biodiesel from microalgae [J].
Chisti, Yusuf .
BIOTECHNOLOGY ADVANCES, 2007, 25 (03) :294-306
[10]   Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms [J].
Costa, JAV ;
Linde, GA ;
Atala, DIP ;
Mibielli, GM ;
Krüger, RT .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2000, 16 (01) :15-18