Traditional culture and microscopy methods for evaluation of bioaerosols are slow, tedious, and rather imprecise. In this study, the application of flow cytometry that was combined with a fluorescent technique (FCM/FL) was evaluated as a technique to quickly and accurately determine and quantify the total concentration and viability of bioaerosols. The optimal conditions of five fluorescent dyes [ acridine orange (AO), SYTO-13, propidium iodide ( PI), YOPRO-1, and 5-cyano-2,3-ditolytetrazolium chloride (CTC)] used in FCM/FL were determined for laboratory samples of bacterial aerosols ( Escherichia coli, and endospores of Bacillus subtilis) and fungal aerosols ( Candida famata and Penicillium citrinum spores). Based on the measured cell concentration, fluorescence intensity, and staining efficiency as indicators for dye performance evaluation, SYTO-13 was found to be the most suitable fluorescent dye for determining the total concentration of the bioaerosols, as well as YOPRO-1 was the most suitable for determining viability. Moreover, the established optimal FCM/FL with dyes was validated for characterizing microorganism profiles from both air and water samples from the aeration tank of hospital wastewater treatment plant. In conclusion, the FCM/FL successfully assessed the total concentration and viability for bacterial and fungal microorganisms in environmental field samples.