General uniqueness results and variation speed for blow-up solutions of elliptic equations

被引:79
作者
Cîrstea, FC
Du, YH
机构
[1] Australian Natl Univ, Inst Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Victoria Univ Technol, Sch Comp Sci & Math, Melbourne, Vic 8001, Australia
[3] Univ New England, Sch Math Stat & Comp Sci, Armidale, NSW 2351, Australia
关键词
D O I
10.1112/S0024611505015273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:459 / 482
页数:24
相关论文
共 27 条
[1]  
[Anonymous], 1987, ENCY MATH APPL
[2]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS AND THEIR DERIVATIVES, FOR SEMILINEAR ELLIPTIC PROBLEMS WITH BLOWUP ON THE BOUNDARY [J].
BANDLE, C ;
MARCUS, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1995, 12 (02) :155-171
[3]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[4]  
Bieberbach L, 1915, MATH ANN, V77, P173
[5]   Extremal singular solutions for degenerate logistic-type equations in anisotropic media [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) :119-124
[6]   Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) :447-452
[7]  
CIRSTEA FC, IN PRESS ASYMPTOTIC
[8]  
CIRSTEA FC, 2002, COMMUN CONTEMP MATH, V4, P559
[9]  
DU Y, 2002, DIFFERENTIAL INTEGRA, V15, P805
[10]   Boundary blow-up solutions and their applications in quaselinear elliptic equations [J].
Du, YH ;
Guo, ZM .
JOURNAL D ANALYSE MATHEMATIQUE, 2003, 89 (1) :277-302