Low-Complexity Rea Time Receiver for Coherent Nyquist-FDM Signals

被引:25
作者
Baeuerle, Benedikt [1 ]
Josten, Arne [1 ]
Eppenberger, Marco [1 ]
Hillerkuss, David [1 ,2 ]
Leuthold, Juerg [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Electromagnet Fields, CH-8092 Zurich, Switzerland
[2] Huawei Technol Duesseldorf GmbH, Opt & Quantum Lab, Munich Off, German Res Ctr, D-80992 Munich, Germany
基金
欧洲研究理事会;
关键词
Coherent communication; coherent detection; digital signal processing; low power; optical coherent transceiver; optical fiber communication; OPTICAL COMMUNICATIONS; FREQUENCY OFFSET; DESIGN; ACCESS; TB/S;
D O I
10.1109/JLT.2018.2877479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and demonstrate a new low-complexity hardware architecture and digital signal processing (DSP) implementation for coherent reception of Nyquist frequency division multiplexed (Nyquist-FDM, digital subcarrier multiplexing) signals in real time. Key to achieve lowest complexity is the combination of an optimized frequency domain and time domain processing block. In the frequency domain processing, we combine subcarrier equalization and timing recovery with a noninteger oversampling ratio of 16/15. In the time domain, we take advantage of polar coordinate processing for the carrier recovery to avoid complex multiplications. The receiver is optimized for flexible operation and allows the adaption of filter coefficients and modulation format between 4QAM, hybrid 4/16QAM, and 16QAM within one clock cycle. The efficiency of the DSP is demonstrated by a real-time coherent receiver implementation on a single FPGA and is experimentally evaluated. Despite of the limited hardware resources, the receiver can detect a 30 GBd Nyquist-FDM signal with four subcarriers and a net data rate of 60 Gb/s (4QAM), 90 (This (4/16QAM), or 120 Gb/s (16QAM) sampled with 32 GSa/s and demodulate one of the subcarriers at a time. Transmission of 300 km through standard single mode fiber is demonstrated with a BER below the soft-decision forward error correction limit.
引用
收藏
页码:5728 / 5737
页数:10
相关论文
共 47 条
[31]   Analytical and Experimental Results on System Maximum Reach Increase Through Symbol Rate Optimization [J].
Poggiolini, Pierluigi ;
Nespola, Antonino ;
Jiang, Yanchao ;
Bosco, Gabriella ;
Carena, Andrea ;
Bertignono, Luca ;
Bilal, Syed Muhammad ;
Abrate, Silvio ;
Forghieri, Fabrizio .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (08) :1872-1885
[32]   Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems [J].
Qiu, Meng ;
Zhuge, Qunbi ;
Chagnon, Mathieu ;
Gao, Yuliang ;
Xu, Xian ;
Morsy-Osman, Mohamed ;
Plant, David V. .
OPTICS EXPRESS, 2014, 22 (15) :18770-18777
[33]  
Rahman Talha., 2016, Optical Fiber Communication Conference, P1, DOI DOI 10.1109/ITEC.2016.7520199
[34]   High Capacity Transport-100G and Beyond [J].
Roberts, Kim ;
Foo, Sik Heng ;
Moyer, Michael ;
Hubbard, Michael ;
Sinclair, Andrew ;
Gaudette, Jamie ;
Laperle, Charles .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (03) :563-578
[35]   Digital filters for coherent optical receivers [J].
Savory, Seb J. .
OPTICS EXPRESS, 2008, 16 (02) :804-817
[36]   Full flex-grid asynchronous multiplexing demonstrated with Nyquist pulse-shaping [J].
Schindler, P. C. ;
Schmogrow, R. ;
Wolf, S. ;
Baeuerle, B. ;
Nebendahl, B. ;
Koos, C. ;
Freude, W. ;
Leuthold, J. .
OPTICS EXPRESS, 2014, 22 (09) :10923-10937
[37]  
Schmitt-Beck R, 2012, POLIT VIERTELJAHR, P1
[38]   Coherent Access: A Review [J].
Shahpari, Ali ;
Ferreira, Ricardo M. ;
Luis, Ruben S. ;
Vujicic, Zoran ;
Guiomar, Fernando P. ;
Reis, Jacklyn D. ;
Teixeira, Antonio L. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (04) :1050-1058
[39]   INTRODUCTION TO PROGRAMMING WINOGRAD FOURIER-TRANSFORM ALGORITHM (WFTA) [J].
SILVERMAN, HF .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1977, 25 (02) :152-165
[40]   Equalizer Design and Complexity for Digital Coherent Receivers [J].
Spinnler, Bernhard .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (05) :1180-1192