A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks

被引:16
|
作者
Chen, Siguang [1 ]
Liu, Jincheng [1 ]
Wang, Kun [1 ]
Wu, Meng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless sensor networks; Hierarchical network; Data sorting; Spatio-temporal compression; Wavelet transform; Discrete cosine transform; DISTRIBUTED DATA-STORAGE; RECONSTRUCTION;
D O I
10.1007/s11276-017-1570-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
How to reduce the number of transmissions or prolong the lifetime of wireless sensor networks significantly has become a great challenge. Based on the spatio-temporal correlations of sensory data, in this paper, we propose a hierarchical adaptive spatio-temporal data compression (HASDC) scheme to address this issue. The proposed compression scheme explores the temporal correlation of original sensory data by employing the discrete cosine transform and adaptive threshold compression algorithm (ATCA). And then, the cluster head node explores the spatial correlation among the compressed temporal readings by utilizing discrete wavelet transform (DWT) and ATCA. The HASDC scheme obtains better recovery quality and compression ratio by combining data sorting, ATCA and spatio-temporal compression concept. At the same time, according to the correlation of sensory data and the adaptive threshold value, the HASDC scheme can adjust the compression ratio adaptively, thus it's applicable to different physical scenarios. Finally, the simulation results confirm that the transformed coefficients are more concentrated than the ones without introducing DWT, and the proposed scheme outperforms other spatio-temporal schemes in terms of compression and recovery performances.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 50 条
  • [41] Fast and efficient lossless adaptive compression scheme for wireless sensor networks
    Kolo, Jonathan Gana
    Shanmugam, S. Anandan
    Lim, David Wee Gin
    Ang, Li-Minn
    COMPUTERS & ELECTRICAL ENGINEERING, 2015, 41 : 275 - 287
  • [42] Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data
    Wikle, Christopher K.
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 175 - 203
  • [43] An Adaptive Huffman Algorithm for Data Compression in Wireless Sensor Networks
    Sacaleanu, Dragos Ioan
    Stoian, Rodica
    Ofrim, Dragos Mihai
    2011 10TH INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS (ISSCS), 2011,
  • [44] Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data
    Christopher K. Wikle
    Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 : 175 - 203
  • [45] An Adaptive Construction Method of Hierarchical Spatio-Temporal Index for Vector Data under Peer-to-Peer Networks
    Li, Chengming
    Wu, Zheng
    Wu, Pengda
    Zhao, Zhanjie
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (11)
  • [46] Hierarchical spatio-temporal graph convolutional neural networks for traffic data imputation
    Xu, Dongwei
    Peng, Hang
    Tang, Yufu
    Guo, Haifeng
    INFORMATION FUSION, 2024, 106
  • [47] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [48] Adaptive data aggregation scheme in clustered wireless sensor networks
    Chen, Huifang
    Mineno, Hiroshi
    Mizuno, Tadanori
    COMPUTER COMMUNICATIONS, 2008, 31 (15) : 3579 - 3585
  • [49] An energy-aware spatio-temporal correlation mechanism to perform efficient data collection in wireless sensor networks
    Villas, Leandro A.
    Boukerche, Azzedine
    Guidoni, Daniel L.
    de Oliveira, Horacio A. B. F.
    de Araujo, Regina Borges
    Loureiro, Antonio A. F.
    COMPUTER COMMUNICATIONS, 2013, 36 (09) : 1054 - 1066
  • [50] Energy-Efficient Data Gathering using Sleep Scheduling and Spatio-Temporal Interpolation in Wireless Sensor Networks
    Kanzaki, Akimitsu
    Kondo, Shinya
    Hara, Takahiro
    Nishio, Shojiro
    2014 28TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), 2014, : 185 - 190