A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks

被引:16
|
作者
Chen, Siguang [1 ]
Liu, Jincheng [1 ]
Wang, Kun [1 ]
Wu, Meng [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Wireless sensor networks; Hierarchical network; Data sorting; Spatio-temporal compression; Wavelet transform; Discrete cosine transform; DISTRIBUTED DATA-STORAGE; RECONSTRUCTION;
D O I
10.1007/s11276-017-1570-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
How to reduce the number of transmissions or prolong the lifetime of wireless sensor networks significantly has become a great challenge. Based on the spatio-temporal correlations of sensory data, in this paper, we propose a hierarchical adaptive spatio-temporal data compression (HASDC) scheme to address this issue. The proposed compression scheme explores the temporal correlation of original sensory data by employing the discrete cosine transform and adaptive threshold compression algorithm (ATCA). And then, the cluster head node explores the spatial correlation among the compressed temporal readings by utilizing discrete wavelet transform (DWT) and ATCA. The HASDC scheme obtains better recovery quality and compression ratio by combining data sorting, ATCA and spatio-temporal compression concept. At the same time, according to the correlation of sensory data and the adaptive threshold value, the HASDC scheme can adjust the compression ratio adaptively, thus it's applicable to different physical scenarios. Finally, the simulation results confirm that the transformed coefficients are more concentrated than the ones without introducing DWT, and the proposed scheme outperforms other spatio-temporal schemes in terms of compression and recovery performances.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 50 条
  • [21] Performance Analysis of Collaborative Spatio-Temporal Processing for Wireless Sensor Networks
    Fischione, C.
    Bonivento, A.
    Sangiovanni-Vincentelli, A.
    Santucci, F.
    Johansson, K. H.
    2006 3RD IEEE CONSUMER COMMUNICATIONS AND NETWORKING CONFERENCE, VOLS 1-3, 2006, : 325 - +
  • [22] Spatio-Temporal Analyses of Environmental Monitoring Based on Wireless Sensor Networks
    Yasutani, Ryoma
    Kitazumi, Koki
    Narieda, Shusuke
    Fujii, Takeo
    Umebayashi, Kenta
    Naruse, Hiroshi
    2021 IEEE SENSORS, 2021,
  • [23] Spatio-temporal sampling, rates and energy efficiency in wireless sensor networks
    Bandyopadhyay, S
    Tian, QJ
    Coyle, EJ
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2005, 13 (06) : 1339 - 1352
  • [24] EXPLOITING STRUCTURE OF SPATIO-TEMPORAL CORRELATION FOR DETECTION IN WIRELESS SENSOR NETWORKS
    Ali, Sadiq
    Lopez-Salcedo, Jose A.
    Seco-Granados, Gonzalo
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 774 - 778
  • [25] Spatio-temporal Characteristics of Point and Field Sources in Wireless Sensor Networks
    Vuran, Mehmet C.
    Akan, Ozgur B.
    2006 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-12, 2006, : 234 - 239
  • [26] Exploiting spatio-temporal correlations for data processing in sensor networks
    Deligiannakis, Antonios
    Kotidis, Yannis
    GEOSENSOR NETWORKS, 2008, 4540 : 45 - +
  • [27] Isolines: efficient spatio-temporal data aggregation in sensor networks
    Solis, Ignacio
    Obraczka, Katia
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2009, 9 (03): : 357 - 367
  • [28] Adaptive Sampling Approach Exploiting Spatio-Temporal Correlation and Residual Energy in Periodic Wireless Sensor Networks
    Fattoum, Marwa
    Jellali, Zakia
    Atallah, Leila Najjar
    IEEE ACCESS, 2023, 11 : 7670 - 7681
  • [29] Spatio-temporal compression of trajectories in road networks
    Popa, Iulian Sandu
    Zeitouni, Karine
    Oria, Vincent
    Kharrat, Ahmed
    GEOINFORMATICA, 2015, 19 (01) : 117 - 145
  • [30] Spatio-temporal compression of trajectories in road networks
    Iulian Sandu Popa
    Karine Zeitouni
    Vincent Oria
    Ahmed Kharrat
    GeoInformatica, 2015, 19 : 117 - 145