Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

被引:44
作者
Cances, Clement [1 ]
Guichard, Cindy [2 ]
机构
[1] Inria Lille Nord Europe, Team RAPSODI, 40 Av Halley, F-59650 Villeneuve Dascq, France
[2] UPMC Univ Paris 06, Lab Jacques Louis Lions, Equipe ANGE, CNRS,INRIA,CEREMA,UMR 7598,Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
关键词
Degenerate parabolic equation; Finite volumes; Nonlinear stability; General grids; Convergence analysis; IMMISCIBLE 2-PHASE FLOWS; DIFFUSION-EQUATIONS; APPROXIMATE SOLUTIONS; EVOLUTION-EQUATIONS; MAXIMUM PRINCIPLE; ELEMENT SCHEME; DARCY FLOWS; CONVERGENCE; ENTROPY; DISCRETIZATION;
D O I
10.1007/s10208-016-9328-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach.
引用
收藏
页码:1525 / 1584
页数:60
相关论文
共 93 条
[11]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[12]  
[Anonymous], 2002, FINITE VOLUME METHOD
[13]  
Antontsev S.N., 1990, STUDIES MATH ITS APP, V22
[14]  
Bear J., 1972, DYNAMIC FLUIDS POROU, V1st
[15]  
Benamou J.-D., 2015, HALHAL01245184
[16]  
Benamou J.-D., 2015, NUMER MATH, P1
[17]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[18]   ITERATIVE BREGMAN PROJECTIONS FOR REGULARIZED TRANSPORTATION PROBLEMS [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Cuturi, Marco ;
Nenna, Luca ;
Peyre, Gabriel .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :A1111-A1138
[19]  
Bessemoulin-Chatard M., 2016, HALHAL01250709
[20]  
Bessemoulin-Chatard M, 2012, THESIS