Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

被引:44
作者
Cances, Clement [1 ]
Guichard, Cindy [2 ]
机构
[1] Inria Lille Nord Europe, Team RAPSODI, 40 Av Halley, F-59650 Villeneuve Dascq, France
[2] UPMC Univ Paris 06, Lab Jacques Louis Lions, Equipe ANGE, CNRS,INRIA,CEREMA,UMR 7598,Sorbonne Univ, 4 Pl Jussieu, F-75005 Paris, France
关键词
Degenerate parabolic equation; Finite volumes; Nonlinear stability; General grids; Convergence analysis; IMMISCIBLE 2-PHASE FLOWS; DIFFUSION-EQUATIONS; APPROXIMATE SOLUTIONS; EVOLUTION-EQUATIONS; MAXIMUM PRINCIPLE; ELEMENT SCHEME; DARCY FLOWS; CONVERGENCE; ENTROPY; DISCRETIZATION;
D O I
10.1007/s10208-016-9328-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach.
引用
收藏
页码:1525 / 1584
页数:60
相关论文
共 93 条
[1]  
Agueh M, 2005, ADV DIFFERENTIAL EQU, V10, P309
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]  
Ambrosio L., 2008, Gradient flows: in metric spaces and in the space of probability measures, V2, P334
[4]   A gradient flow approach to an evolution problem arising in superconductivity [J].
Ambrosio, Luigi ;
Serfaty, Sylvia .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) :1495-1539
[5]   Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices [J].
Ambrosio, Luigi ;
Mainini, Edoardo ;
Serfaty, Sylvia .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (02) :217-246
[6]  
Andreianov B., 2015, HALHAL01142499
[7]   Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs [J].
Andreianov, Boris .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :21-29
[8]   Uniqueness for an elliptic-parabolic problem with Neumann boundary condition [J].
Andreianov, BP ;
Bouhsiss, F .
JOURNAL OF EVOLUTION EQUATIONS, 2004, 4 (02) :273-295
[9]   A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation [J].
Angelini, Ophelie ;
Brenner, Konstantin ;
Hilhorst, Danielle .
NUMERISCHE MATHEMATIK, 2013, 123 (02) :219-257
[10]  
[Anonymous], 1934, Ann. Sci. cole Norm. Sup