The state of water in wet pulps was studied over a wide moisture range, reflecting the conditions on the paper machine from the press section to the reel. Two methods were used: water retention value (WRV) and differential scanning calorimetry (DSC). To increase the measuring accuracy, a modification to the WRV procedure was introduced. The results were directly compared by plotting the values over the observed moisture range. Different types of water were defined from DSC data: free,rater, freezing bound and non-freezing bound water. The water types were plotted in water distribution charts against the solids content. These charts were compared with the WRV data. For all pulps, the three water fractions were found to be interdependent while the free,vater removal rate decreased. Water removal did not take place as an independent water fraction removal sequence. The presence of fines and pulp recycling were found to influence the amount of freezing bound water, but not non-freezing bound water. The results showed an irreversible decrease in WRV (hornification) for all investigated pulps in the range of 20-75% solids content. This pattern corresponded to the relative amount of free water present. Freezing bound water disappeared at a solids content of over 80-85%. With the absence of free water, no further hornification occurred. It was concluded that the WRV appears to be reduced by a closure of large voids by adhesion of the cellulosic pore walls. The softening effect of water is required to cause 'wet hornification' of the structure.