Inferring transcription factor complexes from ChIP-seq data

被引:93
|
作者
Whitington, Tom [1 ]
Frith, Martin C. [2 ]
Johnson, James [1 ]
Bailey, Timothy L. [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] Inst Adv Ind Sci & Technol, Computat Biol Res Ctr, Koto Ku, Tokyo 1350064, Japan
基金
美国国家卫生研究院;
关键词
DNA-BINDING SITES; ACTIVATION; AP-1; ELEMENTS; PU.1; JUN;
D O I
10.1093/nar/gkr341
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) allows researchers to determine the genome-wide binding locations of individual transcription factors (TFs) at high resolution. This information can be interrogated to study various aspects of TF behaviour, including the mechanisms that control TF binding. Physical interaction between TFs comprises one important aspect of TF binding in eukaryotes, mediating tissue-specific gene expression. We have developed an algorithm, spaced motif analysis (SpaMo), which is able to infer physical interactions between the given TF and TFs bound at neighbouring sites at the DNA interface. The algorithm predicts TF interactions in half of the ChIP-seq data sets we test, with the majority of these predictions supported by direct evidence from the literature or evidence of homodimerization. High resolution motif spacing information obtained by this method can facilitate an improved understanding of individual TF complex structures. SpaMo can assist researchers in extracting maximum information relating to binding mechanisms from their TF ChIP-seq data. SpaMo is available for download and interactive use as part of the MEME Suite (http://meme.nbcr.net).
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data
    Lun, Desmond S.
    Sherrid, Ashley
    Weiner, Brian
    Sherman, David R.
    Galagan, James E.
    GENOME BIOLOGY, 2009, 10 (12):
  • [32] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Victor G Levitsky
    Ivan V Kulakovskiy
    Nikita I Ershov
    Dmitry Yu Oshchepkov
    Vsevolod J Makeev
    T C Hodgman
    Tatyana I Merkulova
    BMC Genomics, 15
  • [33] Studying the evolution of transcription factor binding events using multi-species ChIP-Seq data
    Zheng, Wei
    Zhao, Hongyu
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 1 - 15
  • [34] PAD2: interactive exploration of transcription factor genomic colocalization using ChIP-seq data
    Kim, Taiyun
    Kim, Hani Jieun
    Oldfield, Andrew J.
    Yang, Pengyi
    STAR PROTOCOLS, 2023, 4 (02):
  • [35] Application of experimentally verified transcription factor binding sites models for computational analysis of ChIP-Seq data
    Levitsky, Victor G.
    Kulakovskiy, Ivan V.
    Ershov, Nikita I.
    Oshchepkov, Dmitry Yu
    Makeev, Vsevolod J.
    Hodgman, T. C.
    Merkulova, Tatyana I.
    BMC GENOMICS, 2014, 15
  • [36] Normalization of ChIP-seq data with control
    Kun Liang
    Sündüz Keleş
    BMC Bioinformatics, 13
  • [37] Python in ChIP-Seq data analysis
    Zhang, Li
    Hu, Yuansen
    Wang, Jinshui
    Zhang, Guangle
    Journal of Chemical and Pharmaceutical Research, 2014, 6 (03) : 1002 - 1007
  • [38] Optimized ChIP-seq method facilitates transcription factor profiling in human tumors
    Singh, Abhishek A.
    Schuurman, Karianne
    Nevedomskaya, Ekaterina
    Stelloo, Suzan
    Linder, Simon
    Droog, Marjolein
    Kim, Yongsoo
    Sanders, Joyce
    van der Poel, Henk
    Bergman, Andries M.
    Wessels, Lodewyk F. A.
    Zwart, Wilbert
    LIFE SCIENCE ALLIANCE, 2019, 2 (01)
  • [39] GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments
    Yevshin, Ivan
    Sharipov, Ruslan
    Valeev, Tagir
    Kel, Alexander
    Kolpakov, Fedor
    NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D61 - D67
  • [40] Optimized detection of transcription factor-binding sites in ChIP-seq experiments
    Elo, Laura L.
    Kallio, Aleksi
    Laajala, Teemu D.
    Hawkins, R. David
    Korpelainen, Eija
    Aittokallio, Tero
    NUCLEIC ACIDS RESEARCH, 2012, 40 (01)