Boundary integral methods for dispersive equations, Airy flow and the modified Korteweg de Vries equation

被引:4
作者
Franco-de-Leon, Mariano [1 ]
Lowengrub, John [1 ]
机构
[1] Univ Calif Irvine, 540 H Rowland Hall, Irvine, CA 92697 USA
关键词
Dispersive; Solitons; Numerical solution; mKdV; Airy flow; GLOBAL WELL-POSEDNESS; NONLINEAR EVOLUTION; STABILITY ANALYSIS; DEVRIES EQUATION; KDV; CONVERGENCE;
D O I
10.1007/s10444-018-9607-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we implement interface tracking methods for the evolution of 2-D curves that follow Airy flow, a curvature-dependent dispersive geometric evolution law. The curvature of the curve satisfies the modified Korteweg de Vries equation, a dispersive non-linear soliton equation. We present a fully discrete space-time analysis of the equations (proof of convergence) and numerical evidence that confirms the accuracy, convergence, efficiency, and stability of the methods.
引用
收藏
页码:99 / 135
页数:37
相关论文
共 59 条
[1]   ON THE CONNECTION BETWEEN THIN VORTEX LAYERS AND VORTEX SHEETS [J].
BAKER, GR ;
SHELLEY, MJ .
JOURNAL OF FLUID MECHANICS, 1990, 215 :161-194
[2]   Convergence of a boundary integral method for water waves [J].
Beale, JT ;
Hou, TY ;
Lowengrub, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1797-1843
[3]   COMPUTATIONAL METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES [J].
BENSON, DJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1992, 99 (2-3) :235-394
[4]   A Complexity Approach to the Soliton Resolution Conjecture [J].
Bonanno, Claudio .
JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (05) :1432-1448
[5]   Motion of curves in three spatial dimensions using a level set approach [J].
Burchard, P ;
Cheng, LT ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :720-741
[6]  
Canuto C., 2007, Spectral Methods in Fluid Dynamics. Scientific Computation, P4
[7]  
Canuto C., 2007, SPECTRAL METHODS FUN
[8]   Convergence of a non-stiff boundary integral method for interfacial flows with surface tension [J].
Ceniceros, HD ;
Hou, TY .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :137-182
[9]   A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J].
Chang, YC ;
Hou, TY ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) :449-464
[10]   Integrable equations arising from motions of plane curves [J].
Chou, KS ;
Qu, CZ .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 162 (1-2) :9-33