A note on extended beta, Gauss and confluent hypergeometric functions

被引:0
作者
Ali, Musharraf [1 ]
Ghayasuddin, Mohd [2 ]
机构
[1] GF Coll, Dept Math, Shahjahanpur 242001, India
[2] Integral Univ, Dept Math, Centre Shahjahanpur 242001, India
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2021年 / 46期
关键词
Beta function; extended beta function; Gauss hypergeometric function; extended Gauss hypergeometric function; confluent hypergeometric function; extended confluent hypergeometric function; Mittag-Leffler function; EXTENSION; GAMMA;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main object of this article is to present a new extension of beta function by making use of the generalized Mittag-Leffler function. Some integral representations and summation formulae for this function are also given in a systematic way. Next, we define a new type of beta distribution as an application of our extended beta function. Moreover, we consider a further extension of Gauss and confluent hypergeometric functions by introducing our new beta function.
引用
收藏
页码:815 / 826
页数:12
相关论文
共 15 条
[1]   Extended hypergeometric and confluent hypergeornetric functions [J].
Chaudhry, MA ;
Qadir, A ;
Srivastava, HM ;
Paris, RB .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :589-602
[2]  
Chaudhry MA, 1997, J COMPUT APPL MATH, V78, P19, DOI 10.1016/S0377-0427(96)00102-1
[3]  
Choi J., 2018, Far East J. Appl. Math., V103, P235, DOI DOI 10.17654/MS103010235
[4]  
Choi Junesang, 2014, [Honam Mathematical Journal, 호남수학학술지], V36, P357
[5]  
Ghayasuddin M., 2020, Int. J. Appl. Math, V33, P1
[6]  
Khan N. U., 2019, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci, V39, P83
[7]   On the analytical representation of a uniform branch of a monogenic function (fifth note) [J].
Mittag-Leffler, G .
ACTA MATHEMATICA, 1905, 29 (02) :101-181
[8]  
Mohammed WK., 2018, J SCI ENG RES, V9, P257
[9]   Extension of gamma, beta and hypergeometric functions [J].
Ozergin, Emine ;
Ozarslan, Mehmet Ali ;
Altin, Abdullah .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) :4601-4610
[10]  
Parmar R.K., 2017, J. Class. Anal, V11, P91, DOI [10.7153/jca-2017-11-07, DOI 10.7153/JCA-2017-11-07]