Asymptotic Behavior of Solutions of Higher-Order Dynamic Equations on Time Scales

被引:9
作者
Sun, Taixiang [1 ]
Xi, Hongjian [2 ]
Peng, Xiaofeng [1 ]
机构
[1] Guangxi Univ, Coll Math & Informat Sci, Nanning 530004, Guangxi, Peoples R China
[2] Guangxi Coll Finance & Econ, Dept Math, Nanning 530003, Guangxi, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2011年
关键词
OSCILLATION CRITERIA;
D O I
10.1155/2011/237219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic behavior of solutions of the following higher-order dynamic equation x(Delta n)(t) + f (t, x(t), x(Delta)(t), ... , x(Delta n-1) (t)) = 0, on an arbitrary time scale T, where the function f is defined on T x R-n. We give sufficient conditions under which every solution x of this equation satisfies one of the following conditions: (1) lim(t ->infinity)x(Delta n-1)(t) = 0; (2) there exist constants a(i) (0 <= i <= n - 1) with a(0) not equal 0, such that lim(t ->infinity)x(t)/Sigma(n-1)(i=0)a(i)h(n-i-1)(t, t(0)) = 1, where h(i)(t, t(0)) (0 <= i <= n - 1) are as in Main Results.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
Agarwal R.P., 2005, Can. Appl. Math. Quart, V13, P1
[2]   On the asymptotic integration of nonlinear dynamic equations [J].
Akin-Bohner, Elvan ;
Bohner, Martin ;
Djebali, Smail ;
Moussaoui, Toufik .
ADVANCES IN DIFFERENCE EQUATIONS, 2008,
[3]  
[Anonymous], CAN APPL MATH Q
[4]   Oscillation of second order nonlinear dynamic equations on time scales [J].
Bohner, M ;
Saker, SH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1239-1254
[5]   Iterated Oscillation Criteria for Delay Dynamic Equations of First Order [J].
Bohner, M. ;
Karpuz, B. ;
Oecalan, Oe. .
ADVANCES IN DIFFERENCE EQUATIONS, 2008, 2008 (1)
[6]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[7]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[8]  
Bohner Martin., 2005, Far East J. Appl. Math, V18, P289
[9]   Oscillation and Asymptotic Behavior for nth-order Nonlinear Neutral Delay Dynamic Equations on Time Scales [J].
Chen, Da-Xue .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :703-719
[10]   Oscillation criteria for second-order nonlinear delay dynamic equations [J].
Erbe, L. ;
Peterson, A. ;
Saker, S. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :505-522