Numerical methods for non-linear parabolic boundary-value problems with a priory bounded solution
被引:0
作者:
Makhanov, SS
论文数: 0引用数: 0
h-index: 0
机构:
King Mongkuts Inst Technol, Fac Informat Technol, Bangkok 10520, ThailandKing Mongkuts Inst Technol, Fac Informat Technol, Bangkok 10520, Thailand
Makhanov, SS
[1
]
Semenov, AY
论文数: 0引用数: 0
h-index: 0
机构:
King Mongkuts Inst Technol, Fac Informat Technol, Bangkok 10520, ThailandKing Mongkuts Inst Technol, Fac Informat Technol, Bangkok 10520, Thailand
Semenov, AY
[1
]
机构:
[1] King Mongkuts Inst Technol, Fac Informat Technol, Bangkok 10520, Thailand
来源:
COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2
|
1998年
关键词:
D O I:
暂无
中图分类号:
O42 [声学];
学科分类号:
070206 ;
082403 ;
摘要:
We present a new family of numerical methods to solve non-linear parabolic boundary-value problems with constraints a priory imposed on the solution. The proposed procedures are based on a consistent first-order approximation of "diffusion" and "transport" terms combined with an unconditionally stable Gauss-Seidel-type iterative technique. We demonstrate that the proposed algorithms provide an overall priority with regard to conventional numerical schemes as applied to a diffusion wave model of open flows and to a Richards-type model of saturated-unsaturated flows.