An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes

被引:73
|
作者
Tang, Mingzhu [1 ,2 ,3 ]
Zhao, Qi [1 ,2 ]
Ding, Steven X. [2 ]
Wu, Huawei [3 ]
Li, Linlin [2 ]
Long, Wen [4 ]
Huang, Bin [1 ,5 ]
机构
[1] Changsha Univ Sci & Technol, Sch Energy & Power Engn, Changsha 410114, Peoples R China
[2] Univ Duisburg Essen, Inst Automat Control & Complex Syst AKS, D-47057 Duisburg, Germany
[3] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehi, Xiangyang 441053, Peoples R China
[4] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Peoples R China
[5] Univ South Australia, Sch Engn, Adelaide, SA 5095, Australia
基金
中国国家自然科学基金;
关键词
fault diagnosis; maximum information coefficient; Bayesian hyper-parameter optimization; gradient boosting algorithm; LightGBM; DIAGNOSIS; IDENTIFICATION; OPTIMIZATION; MODEL;
D O I
10.3390/en13040807
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To address this issue, this paper is devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this end, the realization of feature selection for fault detection is firstly achieved by utilizing the maximum information coefficient to analyze the correlation among features in supervisory control and data acquisition (SCADA) of wind turbines. After that, a performance evaluation criterion is proposed for the improved LightGBM model to support fault detections. In this scheme, by embedding the confusion matrix as a performance indicator, an improved LightGBM fault detection approach is then developed. Based on the adaptive LightGBM fault detection model, a fault detection strategy for wind turbine gearboxes is investigated. To demonstrate the applications of the proposed algorithms and methods, a case study with a three-year SCADA dataset obtained from a wind farm sited in Southern China is conducted. Results indicate that the proposed approaches established a fault detection framework of wind turbine systems with either lower false alarm rate or lower missing detection rate.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Cost-Sensitive LightGBM-Based Online Fault Detection Method for Wind Turbine Gearboxes
    Tang, Mingzhu
    Zhao, Qi
    Wu, Huawei
    Wang, Zimin
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [2] Cost-Sensitive LightGBM-Based Online Fault Detection Method for Wind Turbine Gearboxes
    Tang, Mingzhu
    Zhao, Qi
    Wu, Huawei
    Wang, Zimin
    Wu, Huawei (whw_xy@hbuas.edu.cn), 1600, Frontiers Media S.A. (09):
  • [3] Fault Diagnosis of Wind Turbine Gearboxes
    Zhang, Yubai
    Yuan, Huiqun
    Yu, Yinxin
    Kou, Haijiang
    Liang, Mingxuan
    RENEWABLE AND SUSTAINABLE ENERGY II, PTS 1-4, 2012, 512-515 : 715 - +
  • [4] Fault Detection of Wind Turbine Gearboxes Based on IBOA-ERF
    Tang, Mingzhu
    Cao, Chenhuan
    Wu, Huawei
    Zhu, Hongqiu
    Tang, Jun
    Peng, Zhonghui
    Wang, Yifan
    SENSORS, 2022, 22 (18)
  • [5] Current-Based Gear Fault Detection for Wind Turbine Gearboxes
    Lu, Dingguo
    Qiao, Wei
    Gong, Xiang
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (04) : 1453 - 1462
  • [6] Fault diagnosis for wind turbine based on LightGBM
    Hu L.
    Jiang W.
    Li Y.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (11): : 255 - 259
  • [7] Current-Based Fault Detection and Identification for Wind Turbine Drivetrain Gearboxes
    Cheng, Fangzhou
    Peng, Yayu
    Qu, Liyan
    Qiao, Wei
    2016 52ND ANNUAL MEETING OF THE IEEE INDUSTRY APPLICATIONS SOCIETY (IAS), 2016,
  • [8] Current-Based Fault Detection and Identification for Wind Turbine Drivetrain Gearboxes
    Cheng, Fangzhou
    Peng, Yayu
    Qu, Liyan
    Qiao, Wei
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (02) : 878 - 887
  • [9] SCADA data as a powerful tool for early fault detection in wind turbine gearboxes
    Abd-Elwahab, Khaled Taha
    Hassan, Ali Ahmed
    WIND ENGINEERING, 2021, 45 (05) : 1317 - 1326
  • [10] Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes
    Corley, Becky
    Koukoura, Sofia
    Carroll, James
    McDonald, Alasdair
    ENERGIES, 2021, 14 (05)