Dynamics of generalized PT-symmetric dimers with time-periodic gain-loss

被引:7
|
作者
Battelli, F. [1 ]
Diblik, J. [2 ]
Feckan, M. [3 ]
Pickton, J. [4 ]
Pospisil, M. [5 ]
Susanto, H. [6 ]
机构
[1] Marche Polytecn Univ, Dept Ind Engn & Math Sci, I-60131 Ancona, Italy
[2] Brno Univ Technol, Fac Elect Engn & Commun, Dept Math, Brno 61600, Czech Republic
[3] Comenius Univ, Dept Math Anal & Numer Math, Bratislava 84248, Slovakia
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[5] Brno Univ Technol, Ctr Res & Utilizat Renewable Energy, Fac Elect Engn & Commun, Brno 61600, Czech Republic
[6] Univ Essex, Dept Math Sci, Colchester CO4 3SQ, Essex, England
关键词
PT-symmetry; PT-reversibility; Schrodinger equation; Melnikov function; Perturbation; Chaos; STABILITY; ORBITS; EQUATIONS; SOLITONS;
D O I
10.1007/s11071-015-1996-2
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A parity-time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrodinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by finding two constants of motion. Firstly, a generalized problem using Melnikov-type analysis and topological degree arguments is studied for showing the existence of periodic (libration), shift-periodic (rotation), and chaotic solutions. Then these general results are applied to the PT-symmetric dimer. It is interestingly shown that if a sufficient condition is satisfied, then rotation modes, which do not exist in the dimer with constant gain-loss, will persist. An approximate threshold for PT-broken phase corresponding to the disappearance of bounded solutions is also presented. Numerical study is presented accompanying the analytical results.
引用
收藏
页码:353 / 371
页数:19
相关论文
共 50 条
  • [41] PT-SYMMETRIC DOUBLE-WELL POTENTIALS REVISITED: BIFURCATIONS, STABILITY AND DYNAMICS
    Rodrigues, A. S.
    Li, K.
    Achilleos, V.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Bender, C. M.
    ROMANIAN REPORTS IN PHYSICS, 2013, 65 (01) : 5 - 26
  • [42] Rogue Wave and Breather Structures with "High Frequency" and "Low Frequency" in PT-Symmetric Nonlinear Couplers with Gain and Loss
    Yu, Dang-Jun
    Zhang, Jie-Fang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (10): : 961 - 969
  • [43] Dynamics and nonlinear modes of nonlinear saturable PT-symmetric coupler
    Abdullaev, F. Kh
    Abdumalikov, A. A.
    OPTIK, 2020, 219 (219):
  • [44] Soliton dynamics in partially PT-symmetric two-dimensional Bessel lattices
    Felix-Rendon, Ulises
    Iakushev, Denis
    Bilal, Muhammad Musavir
    Lopez-Aguayo, Servando
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [45] Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss
    Dai, Chao-Qing
    Wang, Yue-Yue
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 715 - 721
  • [46] PT-symmetry breaking in the steady state of microscopic gain-loss systems
    Kepesidis, Kosmas V.
    Milburn, Thomas J.
    Huber, Julian
    Makris, Konstantinos G.
    Rotter, Stefan
    Rabl, Peter
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [47] Solitons propagation dynamics in a saturable PT-symmetric fractional medium
    Haji Taghi Tehrani, D.
    Solaimani, M.
    Ghalandari, Mahboubeh
    Babayar-Razlighi, B.
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [48] Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics
    Bagchi, B
    Quesne, C
    Znojil, M
    MODERN PHYSICS LETTERS A, 2001, 16 (31) : 2047 - 2057
  • [49] Compactons in PT-symmetric generalized Korteweg-de Vries equations
    Bender, Carl M.
    Cooper, Fred
    Khare, Avinash
    Mihaila, Bogdan
    Saxena, Avadh
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 375 - 385
  • [50] Dynamics of rogue waves in the partially PT-symmetric nonlocal Davey-Stewartson systems
    Yang, Bo
    Chen, Yong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 287 - 303