On convergence of solutions of fractal burgers equation toward rarefaction waves

被引:43
作者
Karch, Grzegorz [1 ]
Miao, Changxing [2 ]
Xu, Xiaojing [3 ]
机构
[1] Univ Wroclawski, Inst Matemat, PL-50384 Wroclaw, Poland
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Beijing Normal Univ, Minist Educ,Sch Math Sci, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
fractal Burgers equation; asymptotic behavior; rarefaction wave; Riemann problem; Levy process;
D O I
10.1137/070681776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the large time behavior of solutions of the Cauchy problem for the one-dimensional fractal Burgers equation u(t) +(-partial derivative(2)(x))(alpha/2) u + uu(x) = 0 with alpha = (1, 2) is studied. It is shown that if the nondecreasing initial datum approaches the constant states u +/- (u(-) < u(+)) as x -> +/-infinity, respectively, then the corresponding solution converges toward the rarefaction wave, i.e., the unique entropy solution of the Riemann problem for the nonviscous Burgers equation.
引用
收藏
页码:1536 / 1549
页数:14
相关论文
共 24 条
[1]   Occurrence and non-appearance of shocks in fractal Burgers equations [J].
Alibaud, Nathael ;
Droniou, Jerome .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2007, 4 (03) :479-499
[2]   Entropy formulation for fractal conservation laws [J].
Alibaud, Nathael .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (01) :145-175
[3]  
Biler P, 1999, STUD MATH, V135, P231
[4]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[5]   Asymptotics for conservation laws involving Levy diffusion generators [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
STUDIA MATHEMATICA, 2001, 148 (02) :171-192
[6]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[7]   A maximum principle applied to quasi-geostrophic equations [J].
Córdoba, A ;
Córdoba, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :511-528
[8]   Global solution and smoothing effect for a non-local regularization of a hyperbolic equation [J].
Droniou, J ;
Gallouet, T ;
Vovelle, J .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (03) :499-521
[9]   Fractal first-order partial differential equations [J].
Droniou, Jerome ;
Imbert, Cyril .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 182 (02) :299-331
[10]  
Hattori Y., 1991, JAPAN J IND APPL MAT, V8, P85, DOI DOI 10.1007/BF03167186