Bearing Diagnosis Accuracy Comparison Using Convolutional Neural Network with Time/Frequency Domain Signals

被引:0
|
作者
He, Da [1 ]
Guo, Wei [1 ,2 ]
He, Mao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] UESTC Guangdong, Inst Elect & Informat Engn, Dongguan, Guangdong, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO) | 2019年
基金
中国国家自然科学基金;
关键词
Convolutional Neural Network; Fast Fourier Transform; Envelope Analysis; Fault Diagnosis; Rolling Bearing; FAULT-DIAGNOSIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep learning is the most attractive topic in the field of machine learning and relevant applications. Owing to the strong learning ability of the convolutional neural network (CNN), it integrates the feature extraction from raw data and classification as a complete learning process and makes the bearing fault diagnosis intelligent. In the published results, the inputs of the CNN may be the raw temporal waveform of vibration, its processed waveform or converted 2D images. In this paper, focusing on the diagnosis accuracy of rolling bearings, a comparative study is conducted among the inputs using the raw temporal waveform, the frequency spectrum, and the envelope spectrum of a vibration signal. First, an appropriate classification model based on the CNN is constructed. Then, experimental data from bearing with real damages are collected and then transformed and converted into some small gray pixel images for training and testing the CNN model. Finally, the classification accuracies using three signals are compared. The results indicate that the diagnosis performances using the above three signals are close when the trained CNN models are stable; among them the model using the frequency spectrum of the vibration signal is a little better than the models using the other two signals, which may be a reference for further investigating the deep learning used in the field of bearing diagnosis.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Research on Bearing Fault Diagnosis Methods Based on Various Convolutional Neural Network Architectures
    Xu, Mingshen
    Guan, Po
    Shi, Xinyu
    Jiang, Runji
    Tian, Jingjia
    Geng, Jianghai
    Xiong, Gaoxian
    IEEE ACCESS, 2025, 13 : 44445 - 44465
  • [42] Fault Diagnosis of Rolling Bearing Based on S-Transform and Convolutional Neural Network
    Wang Qingrong
    Yang Lei
    Wang Songsong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [43] Fault diagnosis strategy of a wind power bearing based on an improved convolutional neural network
    Chang M.
    Shen Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (06): : 131 - 137
  • [44] Convolutional neural network diagnosis method of rolling bearing fault based on casing signal
    Zhang X.
    Chen G.
    Hao T.
    He Z.
    Li X.
    Cheng Z.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (12): : 2729 - 2737
  • [45] A Two-dimensional Convolutional Neural Network Optimization Method for Bearing Fault Diagnosis
    Xiao X.
    Wang J.
    Zhang Y.
    Guo Q.
    Zong S.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (15): : 4558 - 4567
  • [46] Fault Diagnosis of Rolling Bearing Based on Tunable Q-Factor Wavelet Transform and Convolutional Neural Network
    Hou, Liqun
    Li, Zijing
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (02) : 47 - 61
  • [47] Research on the seagull optimization algorithm-based convolutional neural network rolling bearing fault diagnosis method
    Xue, Jijun
    Liu, Xiaodong
    Xu, Hao
    Zhang, Di
    ENGINEERING RESEARCH EXPRESS, 2023, 5 (03):
  • [48] Deep transfer learning rolling bearing fault diagnosis method based on convolutional neural network feature fusion
    Yu, Di
    Fu, Haiyue
    Song, Yanchen
    Xie, Wenjian
    Xie, Zhijie
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (01)
  • [49] A Novel Bearing Fault Diagnosis Method Based on Improved Convolutional Neural Network and Multi-Sensor Fusion
    Wang, Zhongyao
    Xu, Xiao
    Song, Dongli
    Zheng, Zejun
    Li, Weidong
    MACHINES, 2025, 13 (03)
  • [50] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771