Bearing Diagnosis Accuracy Comparison Using Convolutional Neural Network with Time/Frequency Domain Signals

被引:0
|
作者
He, Da [1 ]
Guo, Wei [1 ,2 ]
He, Mao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] UESTC Guangdong, Inst Elect & Informat Engn, Dongguan, Guangdong, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO) | 2019年
基金
中国国家自然科学基金;
关键词
Convolutional Neural Network; Fast Fourier Transform; Envelope Analysis; Fault Diagnosis; Rolling Bearing; FAULT-DIAGNOSIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep learning is the most attractive topic in the field of machine learning and relevant applications. Owing to the strong learning ability of the convolutional neural network (CNN), it integrates the feature extraction from raw data and classification as a complete learning process and makes the bearing fault diagnosis intelligent. In the published results, the inputs of the CNN may be the raw temporal waveform of vibration, its processed waveform or converted 2D images. In this paper, focusing on the diagnosis accuracy of rolling bearings, a comparative study is conducted among the inputs using the raw temporal waveform, the frequency spectrum, and the envelope spectrum of a vibration signal. First, an appropriate classification model based on the CNN is constructed. Then, experimental data from bearing with real damages are collected and then transformed and converted into some small gray pixel images for training and testing the CNN model. Finally, the classification accuracies using three signals are compared. The results indicate that the diagnosis performances using the above three signals are close when the trained CNN models are stable; among them the model using the frequency spectrum of the vibration signal is a little better than the models using the other two signals, which may be a reference for further investigating the deep learning used in the field of bearing diagnosis.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Bearing Fault Diagnosis Based on Adaptive Convolutional Neural Network With Nesterov Momentum
    Gao, Shuzhi
    Pei, Zhiming
    Zhang, Yimin
    Li, Tianchi
    IEEE SENSORS JOURNAL, 2021, 21 (07) : 9268 - 9276
  • [32] Bearing Fault Diagnosis Method Based on Convolutional Neural Network and Knowledge Graph
    Li, Zhibo
    Li, Yuanyuan
    Sun, Qichun
    Qi, Bowei
    ENTROPY, 2022, 24 (11)
  • [33] Fault Diagnosis of Rolling Bearing Using Convolutional Denoising Autoencoder and Siamese Neural Network With Small Sample
    Zhao, Xufeng
    Chen, Ying
    Yang, Mengshu
    Xiang, Jiawei
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5233 - 5244
  • [34] Fault diagnosis of rolling bearing based on online transfer convolutional neural network
    Xu, Quansheng
    Zhu, Bo
    Huo, Hanbing
    Meng, Zong
    Li, Jimeng
    Fan, Fengjie
    Cao, Lixiao
    APPLIED ACOUSTICS, 2022, 192
  • [35] Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals
    Li, Chao
    Chen, Jie
    Yang, Cheng
    Yang, Jingjian
    Liu, Zhigang
    Davari, Pooya
    SENSORS, 2023, 23 (10)
  • [36] Bearing Fault Diagnosis Using a Vector-Based Convolutional Fuzzy Neural Network
    Lin, Cheng-Jian
    Lin, Chun-Hui
    Lin, Frank
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [37] Rotor Fault Diagnosis Using Domain-Adversarial Neural Network with Time-Frequency Analysis
    Xu, Yongjie
    Liu, Jingze
    Wan, Zhou
    Zhang, Dahai
    Jiang, Dong
    MACHINES, 2022, 10 (08)
  • [38] Gearbox fault diagnosis based on frequency-domain Gramian angular difference field and deep convolutional neural network
    Zhang, Jianqun
    Zhang, Qing
    Feng, Wenzong
    Qin, Xianrong
    Sun, Yuantao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (21) : 5187 - 5202
  • [39] Bearing fault diagnosis under various operation conditions using synchrosqueezing transform and improved two-dimensional convolutional neural network
    Zhang, Lei
    Lv, Yong
    Huang, Wenyi
    Yi, Cancan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [40] Convolutional Neural Network Design Based on Weak Magnetic Signals and Its Application in Aircraft Bearing Fault Diagnosis
    Ma, Jianpeng
    Bai, Xiaofeng
    Ma, Fang
    Zhuo, Shi
    Sun, Bojun
    Li, Chengwei
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 36031 - 36043