Bearing Diagnosis Accuracy Comparison Using Convolutional Neural Network with Time/Frequency Domain Signals

被引:0
|
作者
He, Da [1 ]
Guo, Wei [1 ,2 ]
He, Mao [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu, Peoples R China
[2] UESTC Guangdong, Inst Elect & Informat Engn, Dongguan, Guangdong, Peoples R China
来源
2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO) | 2019年
基金
中国国家自然科学基金;
关键词
Convolutional Neural Network; Fast Fourier Transform; Envelope Analysis; Fault Diagnosis; Rolling Bearing; FAULT-DIAGNOSIS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep learning is the most attractive topic in the field of machine learning and relevant applications. Owing to the strong learning ability of the convolutional neural network (CNN), it integrates the feature extraction from raw data and classification as a complete learning process and makes the bearing fault diagnosis intelligent. In the published results, the inputs of the CNN may be the raw temporal waveform of vibration, its processed waveform or converted 2D images. In this paper, focusing on the diagnosis accuracy of rolling bearings, a comparative study is conducted among the inputs using the raw temporal waveform, the frequency spectrum, and the envelope spectrum of a vibration signal. First, an appropriate classification model based on the CNN is constructed. Then, experimental data from bearing with real damages are collected and then transformed and converted into some small gray pixel images for training and testing the CNN model. Finally, the classification accuracies using three signals are compared. The results indicate that the diagnosis performances using the above three signals are close when the trained CNN models are stable; among them the model using the frequency spectrum of the vibration signal is a little better than the models using the other two signals, which may be a reference for further investigating the deep learning used in the field of bearing diagnosis.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Frequency-Domain Fusing Convolutional Neural Network: A Unified Architecture Improving Effect of Domain Adaptation for Fault Diagnosis
    Li, Xudong
    Zheng, Jianhua
    Li, Mingtao
    Ma, Wenzhen
    Hu, Yang
    SENSORS, 2021, 21 (02) : 1 - 26
  • [22] Multiscale Convolutional Neural Network With Feature Alignment for Bearing Fault Diagnosis
    Chen, Junbin
    Huang, Ruyi
    Zhao, Kun
    Wang, Wei
    Liu, Longcan
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [23] Rolling Bearing Fault Diagnosis Based on GWVD and Convolutional Neural Network
    Lv, Xiaoxuan
    Li, Hui
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V, 2023, 14090 : 514 - 523
  • [24] Multiscale convolutional conditional domain adversarial network with channel attention for unsupervised bearing fault diagnosis
    Wang, Haomiao
    Li, Yibin
    Jiang, Mingshun
    Zhang, Faye
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2024, 238 (06) : 1123 - 1134
  • [25] A reinforcement neural architecture search convolutional neural network for rolling bearing fault diagnosis
    Li, Lintao
    Jiang, Hongkai
    Wang, Ruixin
    Yang, Qiao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [26] An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
    Huang, Wenyi
    Cheng, Junsheng
    Yang, Yu
    Guo, Gaoyuan
    NEUROCOMPUTING, 2019, 359 : 77 - 92
  • [27] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [28] Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2021, 73 (03) : 516 - 522
  • [29] Interpretable parallel channel encoding convolutional neural network for bearing fault diagnosis
    Tong, Qingbin
    Du, Shouxin
    Jiang, Xuedong
    Lu, Feiyu
    Feng, Ziwei
    Liu, Ruifang
    Xu, Jianjun
    Huo, Jingyi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [30] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44