Asymptotic formulas for generalized elliptic-type integrals

被引:14
作者
Kalla, SL [1 ]
Tuan, VK [1 ]
机构
[1] UNIV ZULIA,CIMA,MARACAIBO,VENEZUELA
关键词
elliptic-type integrals; hypergeometric functions; Asymptotic formulas;
D O I
10.1016/0898-1221(96)00124-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Epstein-Hubbell [1] elliptic-type integrals occur in radiation field problems. The object of the present paper is to consider a unified form of different elliptic-type integrals, defined and developed recently by several authors. We obtain asymptotic formulas for the generalized elliptic-type integrals.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [31] Asymptotic Formulas for Thermography Based Recovery of Anomalies
    Habib Ammari
    Anastasia Kozhemyak
    Darko Volkov
    NumericalMathematics:Theory,MethodsandApplications, 2009, (01) : 18 - 42
  • [32] Approximations related to the complete p-elliptic integrals
    Zhong, Genhong
    Ma, Xiaoyan
    Wang, Fei
    OPEN MATHEMATICS, 2022, 20 (01): : 1046 - 1056
  • [33] CONVEXITY AND MONOTONICITY FOR ELLIPTIC INTEGRALS OF THE FIRST KIND AND APPLICATIONS
    Yang, Zhen-Hang
    Tian, Jing-Feng
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 240 - 260
  • [34] Asymptotic formulas for the diameter of sections of symmetric convex bodies
    Giannopoulos, A
    Milman, VD
    Tsolomitis, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 223 (01) : 86 - 108
  • [35] On sharp asymptotic formulas for the Sturm–Liouville operator with a matrix potential
    F. Seref
    O. A. Veliev
    Mathematical Notes, 2016, 100 : 291 - 297
  • [36] ABSOLUTE MONOTONICITY INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND WITH APPLICATIONS
    Yang, Zhenhang
    Tian, Jingfeng
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 847 - 864
  • [37] MONOTONICITY PROPERTIES AND BOUNDS INVOLVING THE COMPLETE ELLIPTIC INTEGRALS OF THE FIRST KIND
    Yang, Zhen-Hang
    Qian, Wei-Mao
    Chu, Yu-Ming
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (04): : 1185 - 1199
  • [38] Fourier series for elliptic integrals and some generalizations via hypergeometric series
    Conway, J. T.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (05) : 305 - 315
  • [39] A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities
    Alzer, Horst
    Richards, Kendall
    ANALYSIS MATHEMATICA, 2015, 41 (03) : 133 - 139
  • [40] On sharp asymptotic formulas for the Sturm-Liouville operator with a matrix potential
    Seref, F.
    Veliev, O. A.
    MATHEMATICAL NOTES, 2016, 100 (1-2) : 291 - 297