OBJECTIVE IMAGE QUALITY ANALYSIS OF CONVOLUTIONAL NEURAL NETWORK LIGHT FIELD CODING

被引:0
作者
Medda, Daniele [1 ]
Song, Wei [2 ]
Perra, Cristian [1 ]
机构
[1] Univ Cagliari, UdR CNIT, DIEE, Cagliari, Italy
[2] Shanghai Ocean Univ, Coll Informat Technol, Shanghai, Peoples R China
来源
2019 8TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP 2019) | 2019年
基金
中国国家自然科学基金;
关键词
convolutional neural network; autoencoder; light field; coding; compression; image quality;
D O I
10.1109/euvip47703.2019.8946230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Light field digital images are novel image modalities for capturing a sampled representation of the plenoptic function. A large amount of data is typically associated to a single sample of a scene, and data compression tools are required in order to develop systems and applications for light field communications. This paper presents the study of the performance of a convolutional neural network autoencoder as a tool for digital light field image compression. Testing conditions and a framework for the experimental evaluation are proposed for this study. Different encoders and coding conditions are taken into consideration, obtained results are reported and critically discussed.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
[21]   No-Reference Image Quality Assessment Using Independent Component Analysis and Convolutional Neural Network [J].
Zhang, Chuang ;
Xu, Jiawei ;
Huang, Xiaoyu ;
Park, Seop Hyeong .
JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (01) :487-496
[22]   Enhancement of digital radiography image quality using a convolutional neural network [J].
Sun, Yuewen ;
Li, Litao ;
Cong, Peng ;
Wang, Zhentao ;
Guo, Xiaojing .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2017, 25 (06) :857-868
[23]   SCREEN CONTENT IMAGE QUALITY ASSESSMENT VIA CONVOLUTIONAL NEURAL NETWORK [J].
Zuo, Lingxuan ;
Wang, Hanli ;
Fu, Jie .
2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, :2082-2086
[24]   A comprehensive survey on convolutional neural network in medical image analysis [J].
Yao, Xujing ;
Wang, Xinyue ;
Wang, Shui-Hua ;
Zhang, Yu-Dong .
MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) :41361-41405
[25]   A comprehensive survey on convolutional neural network in medical image analysis [J].
Xujing Yao ;
Xinyue Wang ;
Shui-Hua Wang ;
Yu-Dong Zhang .
Multimedia Tools and Applications, 2022, 81 :41361-41405
[26]   Analysis of image forgery detection using convolutional neural network [J].
Gnaneshwar C. ;
Singh M.K. ;
Yadav S.S. ;
Balabantaray B.K. .
International Journal of Applied Systemic Studies, 2022, 9 (03) :240-260
[27]   Image dehazing using autoencoder convolutional neural network [J].
Richa Singh ;
Ashwani Kumar Dubey ;
Rajiv Kapoor .
International Journal of System Assurance Engineering and Management, 2022, 13 :3002-3016
[28]   LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution [J].
Wang, Yunlong ;
Liu, Fei ;
Zhang, Kunbo ;
Hou, Guangqi ;
Sun, Zhenan ;
Tan, Tieniu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (09) :4274-4286
[29]   Image dehazing using autoencoder convolutional neural network [J].
Singh, Richa ;
Dubey, Ashwani Kumar ;
Kapoor, Rajiv .
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (06) :3002-3016
[30]   Cone Beam Computed Tomography Image Quality Improvement Using a Deep Convolutional Neural Network [J].
Kida, Satoshi ;
Nakamoto, Takahiro ;
Nakano, Masahiro ;
Nawa, Kanabu ;
Haga, Akihiro ;
Kotoku, Jun'ichi ;
Yamashita, Hideomi ;
Nakagawa, Keiichi .
CUREUS, 2018, 10 (04)