Personalized medicine in rheumatic diseases: how close are we to being able to use genetic biomarkers to predict response to TNF inhibitors?

被引:9
作者
Sutcliffe, Megan [1 ]
Radley, Gemma [1 ]
Barton, Anne [1 ,2 ]
机构
[1] Univ Manchester, Versus Arthrit Ctr Genet & Genom, Ctr Musculoskeletal Res, Manchester, Lancs, England
[2] Manchester Univ NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, NIHR Manchester Biomed Res Ctr, Manchester, Lancs, England
基金
英国医学研究理事会;
关键词
Biomarker; precision medicine; treatment response; rheumatoid arthritis; pharmacogenetic; ACTIVITY SCORE DAS28; ARTHRITIS; VALIDATION; PATHOGENESIS; ASSOCIATION; REMISSION; SIGNATURE; EFFICACY; THERAPY; IMPACT;
D O I
10.1080/1744666X.2020.1740594
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Introduction: A genetic biomarker to select which drug will work best for which patients with rheumatic diseases is a goal of pharmacogenetic precision medicine approaches and one that patients and the public support. However, studies to date have yielded inconsistent findings with no robustly replicated or clinically useful genetic biomarkers emerging. Areas covered: Using studies investigating biomarkers to predict response to tumor necrosis factor inhibitor therapies in rheumatoid arthritis as an exemplar, we consider factors that reduce the power to detect such predictive biomarkers, including non-adherence, immunogenicity, the use of clinical outcome measures comprising composite scores and sample size. We argue that the biologic therapies were developed to target joint inflammation and so the outcome measure should be closer to the biology and, ideally, should be a biological measure. Given that heritability studies have shown a substantial genetic contribution, there is merit in designing studies to optimize the chance of identifying robust genetic markers and that includes testing drug levels for adherence. Expert opinion: Ultimately, we think that genetics will be used as part of an algorithm to assess likely response to individual drugs but that other factors will also be important including clinical and environmental factors.
引用
收藏
页码:389 / 396
页数:8
相关论文
共 60 条
[1]   Epidemiology of adult rheumatoid arthritis [J].
Alamanos, Y ;
Drosos, AA .
AUTOIMMUNITY REVIEWS, 2005, 4 (03) :130-136
[2]   A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis [J].
Aterido, Adria ;
Canete, Juan D. ;
Tornere, Jesus ;
Blanco, Francisco ;
Fernandez-Gutierrez, Benjamin ;
Perez, Carolina ;
Alperi-Lopez, Mercedes ;
Olive, Alex ;
Corominas, Hector ;
Martinez-Taboada, Victor ;
Gonzalez, Lsidoro ;
Fernandez-Nebro, Antonio ;
Erra, Alba ;
Lopez-Lasanta, Maria ;
Lopez Corbeto, Mireia ;
Palau, Nuria ;
Marsal, Sara ;
Julia, Antonio .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[3]   Development and Validation of Modified Disease Activity Scores in Rheumatoid Arthritis [J].
Baker, Joshua F. ;
Conaghan, Philip G. ;
Smolen, Josef S. ;
Aletaha, Daniel ;
Shults, Justine ;
Emery, Paul ;
Baker, Daniel G. ;
Ostergaard, Mikkel .
ARTHRITIS & RHEUMATOLOGY, 2014, 66 (04) :794-802
[4]   Systematic review and meta-analysis: pharmacogenetics of anti-TNF treatment response in rheumatoid arthritis [J].
Bek, S. ;
Bojesen, A. B. ;
Nielsen, J. V. ;
Sode, J. ;
Bank, S. ;
Vogel, U. ;
Andersen, V. .
PHARMACOGENOMICS JOURNAL, 2017, 17 (05) :403-411
[5]   Precision Medicine in Rheumatoid Arthritis [J].
Bluett, James ;
Barton, Anne .
RHEUMATIC DISEASE CLINICS OF NORTH AMERICA, 2017, 43 (03) :377-+
[6]   Impact of inadequate adherence on response to subcutaneously administered anti-tumour necrosis factor drugs: results from the Biologics in Rheumatoid Arthritis Genetics and Genomics Study Syndicate cohort [J].
Bluett, James ;
Morgan, Catharine ;
Thurston, Layla ;
Plant, Darren ;
Hyrich, Kimme L. ;
Morgan, Ann W. ;
Wilson, Anthony G. ;
Isaacs, John D. ;
Cordingley, Lis ;
Barton, Anne .
RHEUMATOLOGY, 2015, 54 (03) :494-499
[7]   An Explanation for the Apparent Dissociation Between Clinical Remission and Continued Structural Deterioration in Rheumatoid Arthritis [J].
Brown, A. K. ;
Conaghan, P. G. ;
Karim, Z. ;
Quinn, M. A. ;
Ikeda, K. ;
Peterfy, C. G. ;
Hensor, E. ;
Wakefield, R. J. ;
O'Connor, P. J. ;
Emery, P. .
ARTHRITIS AND RHEUMATISM, 2008, 58 (10) :2958-2967
[8]   The value of synovial cytokine expression in predicting the clinical response to TNF antagonist therapy (infliximab) [J].
Buch, M. H. ;
Reece, R. J. ;
Quinn, M. A. ;
English, A. ;
Cunnane, G. ;
Henshaw, K. ;
Bingham, S. J. ;
Bejarano, V. ;
Isaacs, J. ;
Emery, P. .
RHEUMATOLOGY, 2008, 47 (10) :1469-1475
[9]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[10]   Validation of methods for converting the original Disease Activity Score (DAS) to the DAS28 [J].
Carpenter, Lewis ;
Norton, Sam ;
Nikiphorou, Elena ;
Kiely, Patrick ;
Walsh, David A. ;
Dixey, Josh ;
Young, Adam .
RHEUMATOLOGY INTERNATIONAL, 2018, 38 (12) :2297-2305