Multiple solitary waves for a generalized Kadomtsev-Petviashvili with a

被引:5
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational methods; Kadomtsev-Petviashvili equation; Multiple solutions; PERIODIC-WAVES; EXISTENCE; EQUATION; WATER;
D O I
10.1016/j.jde.2021.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence multiple solitary waves for a generalized Kadomtsev-Petviashvili equation with a potential in dimension two. The number of waves correspond to the number of global minimum points of the potential when a parameter is small enough. (c) 2021 Published by Elsevier Inc. MSC: primary 35A15; secondary 35A18, 35Q53, 58E05, 76B25
引用
收藏
页码:40 / 56
页数:17
相关论文
共 27 条
[11]   Fully localised solitary-wave solutions of the three-dimensional gravity-capillary water-wave problem [J].
Groves, M. D. ;
Sun, S. -M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 188 (01) :1-91
[12]   2-DIMENSIONAL PERIODIC-WAVES IN SHALLOW-WATER .2. ASYMMETRIC WAVES [J].
HAMMACK, J ;
MCCALLISTER, D ;
SCHEFFNER, N ;
SEGUR, H .
JOURNAL OF FLUID MECHANICS, 1995, 285 :95-122
[13]   Asymptotics for large time of global solutions to the generalized Kadomtsev-Petviashvili equation [J].
Hayashi, N ;
Naumkin, PI ;
Saut, JC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :577-590
[14]   Nontrivial solitary waves to the generalized Kadomtsev-Petviashvili equations [J].
He, Xiaoming ;
Zou, Wenming .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (02) :858-863
[15]   Multiple positive solutions of quasilinear elliptic equations in RN [J].
Hsu, Tsing-san ;
Lin, Huei-li ;
Hu, Chung-Che .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :500-512
[16]  
Infeld E., 2001, NONLINEAR WAVES SOLI
[17]   Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices [J].
Isaza, P ;
Mejía, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (5-6) :1027-1054
[18]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[19]  
Liang ZP, 2012, ACTA MATH SCI, V32, P1149
[20]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109