Multiple solitary waves for a generalized Kadomtsev-Petviashvili with a

被引:5
作者
Figueiredo, Giovany [1 ]
Montenegro, Marcelo [2 ]
机构
[1] Univ Brasilia, Dept Matemat, Campus Darcy Ribeiro 01, BR-70910900 Brasilia, DF, Brazil
[2] Univ Estadual Campinas, Dept Matemat, IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Variational methods; Kadomtsev-Petviashvili equation; Multiple solutions; PERIODIC-WAVES; EXISTENCE; EQUATION; WATER;
D O I
10.1016/j.jde.2021.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence multiple solitary waves for a generalized Kadomtsev-Petviashvili equation with a potential in dimension two. The number of waves correspond to the number of global minimum points of the potential when a parameter is small enough. (c) 2021 Published by Elsevier Inc. MSC: primary 35A15; secondary 35A18, 35Q53, 58E05, 76B25
引用
收藏
页码:40 / 56
页数:17
相关论文
共 27 条
[1]   Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in RN with positive and zero mass [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. ;
Pomponio, Alessio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) :523-535
[2]   Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation [J].
Alves, Claudianor O. ;
Miyagaki, Olimpio H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (08)
[3]  
[Anonymous], 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]  
Besov O.V., 1978, Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow 1975 (in Russian)
[6]  
English transl, V1
[7]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P315
[8]  
BREZIS H, 1986, P SYMP PURE MATH, V45, P165
[9]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[10]   THE CAUCHY-PROBLEM FOR THE KADOMTSEV-PETVIASHVILI EQUATION [J].
FAMINSKII, AV .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) :203-204