Towards Robust Models of Cyber-Physical Systems

被引:1
作者
Schaffeld, Matthias [1 ]
Weis, Torben [1 ]
机构
[1] Univ Duisburg Essen, Duisburg, Germany
来源
UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS | 2021年
关键词
cyber-physical systems; hidden Markov model; ubiquitous computing;
D O I
10.1145/3460418.3479314
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber-Physical Systems (CPS) combine software with the physical world. For this purpose, CPS must model physical behavior in software. However, a software-based model cannot always accurately reflect the physical world. Often the model is a simplification of complex physical processes, or it suffers from measurement errors, or the physical side is subject to modifications and parameter drift, or the model is simply subject to misconceptions. It is an open research challenge how we can verify that physics and software-based model fit together. However, to rely on CPS in real-world scenarios we must ensure that physics and model are aligned. We propose a model formalism based on hidden Markov models that considers uncertainty and unknown phenomena and is robust enough to allow the analysis of CPS when working with error-prone data. More specifically, given observation data and an instance of the proposed model for a CPS (both of which may be flawed) the proposed formalism allows us to quantify the suitability between physics and model. If, however, a given model instance is deemed correct, the formalism enables methods which identify and smooth corrupt observation data as well as compute the most likely sequence of events for a given set of observations. Additionally, the formalism enables the learning of a suitable model according to given observation data. The model formalism will be tested with a simulation and a case study of an overhead traveling cargo crane system.
引用
收藏
页码:104 / 107
页数:4
相关论文
共 50 条
[21]   DualFocus GAN for Robust Watermarking in Transportation Cyber-Physical Systems [J].
Kou, Feifei ;
Yao, Yuhan ;
Han, Jideng ;
Wang, Jiahao ;
Li, Haisheng ;
Li, Xingchen ;
Zhang, Jiwei .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025,
[22]   Challenges in Engineering Cyber-Physical Systems [J].
Broy, Manfred ;
Schmidt, Albrecht .
COMPUTER, 2014, 47 (02) :70-72
[23]   Cyber-Physical Zero Trust Architecture for Industrial Cyber-Physical Systems [J].
Feng, Xiaomeng ;
Hu, Shiyan .
IEEE TRANSACTIONS ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, 2023, 1 :394-405
[24]   Towards Requirements Engineering for Digital Twins of Cyber-Physical Systems [J].
Yue, Tao ;
Ali, Shaukat ;
Arcaini, Paolo ;
Ishikawa, Fuyuki .
LEVERAGING APPLICATIONS OF FORMAL METHODS, VERIFICATION AND VALIDATION. PRACTICE, ISOLA 2022, PT IV, 2022, 13704 :9-21
[25]   Towards a Security Reinforcement Mechanism for Social Cyber-Physical Systems [J].
Ouchani, Samir .
SMART APPLICATIONS AND DATA ANALYSIS, SADASC 2020, 2020, 1207 :59-73
[26]   Towards Formal Verification of Neural Networks in Cyber-Physical Systems [J].
Rossi, Federico ;
Bernardeschi, Cinzia ;
Cococcioni, Marco ;
Palmieri, Maurizio .
NASA FORMAL METHODS, NFM 2024, 2024, 14627 :207-222
[27]   Towards a Cyber-Physical Systems Based Operating Room of the Future [J].
Chng, Chin-Boon ;
Wong, Pooi-Mun ;
Ho, Nicholas ;
Tan, Xiaoyu ;
Chui, Chee-Kong .
OR 2.0 CONTEXT-AWARE OPERATING THEATERS AND MACHINE LEARNING IN CLINICAL NEUROIMAGING, 2019, 11796 :47-55
[28]   Towards a Systematic Threat Modeling Approach for Cyber-physical Systems [J].
Martins, Goncalo ;
Bhatia, Sajal ;
Koutsoukos, Xenofon ;
Stouffer, Keith ;
Tang, CheeYee ;
Candell, Richard .
2015 RESILIENCE WEEK (RSW), 2015, :114-119
[29]   Towards Precision Control in Constrained Wireless Cyber-Physical Systems [J].
Boyle, David ;
Kolcun, Roman ;
Yeatman, Eric .
INTERNET OF THINGS: IOT INFRASTRUCTURES, IOT 360, PT II, 2016, 170 :292-306
[30]   Towards Dependability Engineering of Cooperative Automotive Cyber-Physical Systems [J].
Macher, Georg ;
Armengaud, Eric ;
Schneider, Daniel ;
Brenner, Eugen ;
Kreiner, Christian .
SYSTEMS, SOFTWARE AND SERVICES PROCESS IMPROVEMENT (EUROSPI 2017), 2017, 748 :205-215