Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor

被引:131
作者
Lv, Yuexia [1 ,2 ]
Yu, Xinhai [1 ]
Tu, Shan-Tung [1 ]
Yan, Jinyue [2 ,3 ]
Dahlquist, Erik [2 ]
机构
[1] E China Univ Sci & Technol, Key Lab Pressure Syst & Safety, Minist Educ, Sch Mech & Power Engn, Shanghai 200237, Peoples R China
[2] Malardalen Univ, Sch Sustainable Dev Soc & Technol, Vasteras, Sweden
[3] Royal Inst Technol, Sch Chem Sci & Engn, Stockholm, Sweden
关键词
Simultaneous absorption; CO2; capture; SO2; removal; Membrane contactor; Partial wetting; CARBON-DIOXIDE; FLUE-GAS; SIMULTANEOUS ABSORPTION; HYDROGEN-SULFIDE; SULFUR-DIOXIDE; SEPARATION; CAPTURE; STREAMS; H2S; PERFORMANCE;
D O I
10.1016/j.apenergy.2012.01.034
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Membrane gas absorption technology is a promising alternative to conventional technologies for the mitigation of acid gases. In this study, simultaneous removal of SO2 and CO2 from coal-fired flue gas was carried out in a polypropylene hollow fiber membrane contactor using aqueous monoethanolamine as the absorbent. The influences of liquid and gas flow rates on the simultaneous absorption performance of CO2 and SO2 were investigated. The experimental results indicated that the membrane contactor could eliminate these two sour gases simultaneously and effectively. Absorption of SO2 and CO2 was enhanced by the increase in liquid flow rate and decrease in gas flow rate. It was observed that a small amount of SO2 in the flue gas had a slight influence on the absorption of CO2. In addition, the membrane contactor was operated continuously for two weeks to evaluate its duration performance. The results showed that the CO2 mass transfer rate was decreased significantly with the operating time due to partial wetting of membrane pores. After 14 days of continuous operation, the CO2 mass transfer rate of the wetted membrane contactor was decreased by 41% but could be retrieved to 86% of the fresh one by increasing the gas phase pressure. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:283 / 288
页数:6
相关论文
共 50 条
  • [31] Functionalized Covalent Triazine Frameworks for Effective CO2 and SO2 Removal
    Fu, Yu
    Wang, Zhiqiang
    Li, Sizhe
    He, Xunming
    Pan, Chunyue
    Yan, Jun
    Yu, Guipeng
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (42) : 36002 - 36009
  • [32] Modelling of a hollow fibre ceramic contactor for SO2 absorption
    Luis, P.
    Garea, A.
    Irabien, A.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2010, 72 (02) : 174 - 179
  • [33] Modeling and simulation of the combined removal of SO2 and CO2 by aqueous ammonia
    Asif, Muhammad
    Kim, Woo-Seung
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (04): : 509 - 527
  • [34] Polyetherimide hollow fiber membranes for CO2 absorption and stripping in membrane contactor application
    Naim, R.
    Ismail, A. F.
    Matsuura, T.
    Rudaini, I. A.
    Abdullah, S.
    RSC ADVANCES, 2018, 8 (07) : 3556 - 3563
  • [35] Mass transfer characteristics of a continuously operated hollow-fiber membrane contactor and stripper unit for CO2 capture
    Nieminen, H.
    Jarvinen, L.
    Ruuskanen, V.
    Laari, A.
    Koiranen, T.
    Ahola, J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2020, 98
  • [36] An innovative process for simultaneous removal of CO2 and SO2 from flue gas of a power plant by energy integration
    Yu, Y. S.
    Li, Y.
    Li, Q.
    Jiang, J.
    Zhang, Z. X.
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (12) : 2885 - 2892
  • [37] Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping
    Naim, R.
    Ismail, A. F.
    JOURNAL OF HAZARDOUS MATERIALS, 2013, 250 : 354 - 361
  • [38] Polyvinylidene fluoride and polyetherimide hollow fiber membranes for CO2 stripping in membrane contactor
    Naim, Rosma
    Ismail, A. F.
    Cheer, N. B.
    Abdullah, M. S.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2014, 92 (07) : 1391 - 1398
  • [39] CO2 capture using a superhydrophobic ceramic membrane contactor
    Yu, Xinhai
    An, Lin
    Yang, Jie
    Tu, Shan-Tung
    Yan, Jinyue
    JOURNAL OF MEMBRANE SCIENCE, 2015, 496 : 1 - 12
  • [40] Removal of NO Research in A Polypropylene Hollow Fiber Membrane Contactor
    Wang, Ying
    Yu, Xinhai
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND SUSTAINABLE DEVELOPMENT (ICEESD 2017), 2017, 129 : 1015 - 1022