Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device

被引:3
|
作者
Zhou, Shu [1 ]
Heidbrink, W. W. [1 ]
Boehmer, H. [1 ]
McWilliams, R. [1 ]
Carter, T. A. [2 ]
Vincena, S. [2 ]
Tripathi, S. K. P. [2 ]
Van Compernolle, B. [2 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
CONFINEMENT; BEHAVIOR;
D O I
10.1063/1.3695341
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (delta n/n similar to delta phi/kT(e) similar to 0.5, f similar to 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E x B drift through biasing the obstacle and by modification of the axial magnetic fields (B-z) and the plasma species. Cross-field plasma transport is suppressed with small bias and large B-z and is enhanced with large bias and small B-z. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (rho(fast)/rho(s) similar to 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (E-r) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static E-r are evaluated both analytically and numerically. Simulation results indicate that the E-r induced transport is predominately convective. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695341]
引用
收藏
页数:8
相关论文
共 45 条
  • [31] An Investigation of the Influence of the Plasma Current on the Ion Heat Transport in the Globus-M Spherical Tokamak
    Tel'nova, A. Yu.
    Kurskiev, G. S.
    Miroshnikov, I. V.
    Avdeeva, G. F.
    Bakharev, N. N.
    Gusev, V. K.
    Minaev, V. B.
    Mel'nik, A. D.
    Petrov, Yu. V.
    Sakharov, N. V.
    Chernyshev, F. V.
    Shchegolev, P. B.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (08) : 700 - 704
  • [32] Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device
    Isobe, M.
    Ogawa, K.
    Toi, K.
    Osakabe, M.
    Nagaoka, K.
    Shimizu, A.
    Spong, D. A.
    Okumura, S.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (6-7) : 540 - 545
  • [33] Characterization of edge radial electric field structures in the Large Helical Device and their viability for determining the location of the plasma boundary
    Kamiya, K.
    Ida, K.
    Yoshinuma, M.
    Suzuki, C.
    Suzuki, Y.
    Yokoyama, M.
    NUCLEAR FUSION, 2013, 53 (01)
  • [34] A rotating directional probe for the measurements of fast ion losses and plasma rotation at Tokamak Experiment for Technology Oriented Research
    Rack, M.
    Liang, Y.
    Jaegers, H.
    Assmann, J.
    Satheeswaran, G.
    Xu, Y.
    Pearson, J.
    Yang, Y.
    Denner, P.
    Zeng, L.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (08)
  • [35] Divalent ion mixed effect of calcium aluminosilicate glasses (CAS) on thermal properties and fluorocarbon plasma resistance
    Park, Jewon
    Na, Hyein
    Park, Jae-Hyuk
    Kim, Dae-Gun
    Choi, Sung-Churl
    Kim, Hyeong-Jun
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2020, 533
  • [36] Response of thermal and fast-ion transport to beam ion population, rotation and Te/Ti in the DIII-D steady state hybrid scenario
    Thome, K. E.
    Du, X. D.
    Grierson, B. A.
    Kramer, G. J.
    Petty, C. C.
    Holland, C.
    Knolker, M.
    McKee, G. R.
    McClenaghan, J.
    Pace, D. C.
    Rhodes, T. L.
    Smith, S. P.
    Sung, C.
    Turco, F.
    Van Zeeland, M. A.
    Zeng, L.
    Zhu, Y. B.
    NUCLEAR FUSION, 2021, 61 (03)
  • [37] On generation of Alfvenic-like fluctuations by drift wave-zonal flow system in large plasma device experiments
    Horton, W.
    Correa, C.
    Chagelishvili, G. D.
    Avsarkisov, V. S.
    Lominadze, J. G.
    Perez, J. C.
    Kim, J. -H.
    Carter, T. A.
    PHYSICS OF PLASMAS, 2009, 16 (09)
  • [38] Ion heat transport in electron cyclotron resonance heated L-mode plasma on the T-10 tokamak
    Krupin, V. A.
    Nurgaliev, M. R.
    Nemets, A. R.
    Zemtsov, I. A.
    Suntsov, S. D.
    Myalton, T. B.
    Sergeev, D. S.
    Solovev, N. A.
    Sarychev, D. V.
    Ryjakov, D. V.
    Tugarinov, S. N.
    Naumenko, N. N.
    PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (04)
  • [39] Large-scale production of highly stable silicon monoxide nanowires by radio-frequency thermal plasma as anodes for high-performance Li-ion batteries
    Yang, Zongxian
    Du, Yu
    Yang, Yijun
    Jin, Huacheng
    Shi, Hebang
    Bai, Liuyang
    Ouyang, Yuge
    Ding, Fei
    Hou, Guolin
    Yuan, Fangli
    JOURNAL OF POWER SOURCES, 2021, 497
  • [40] Influence of ICRF-NBI synergy on fast ion distribution and plasma performance in second harmonic heating experiments with deuterium NBI at EAST
    Zhang, W.
    Zhu, G. -h.
    Zhang, X. -j.
    Zhong, G. -q.
    Ai, L.
    Chu, Y. -q.
    Fan, T. -s.
    Fan, H. -c.
    Guo, Y. -y.
    Hao, B. -l.
    Huang, J.
    Jin, Y. -f.
    Liu, L. -n.
    Liao, L. -y.
    Li, Y. -h.
    Liang, Q. -c.
    Sun, Y. -x.
    Wang, G. X.
    Yang, D. -k.
    Yang, H.
    Zhang, H. -p.
    NUCLEAR FUSION, 2023, 63 (05)