Thermal plasma and fast ion transport in electrostatic turbulence in the large plasma device

被引:3
|
作者
Zhou, Shu [1 ]
Heidbrink, W. W. [1 ]
Boehmer, H. [1 ]
McWilliams, R. [1 ]
Carter, T. A. [2 ]
Vincena, S. [2 ]
Tripathi, S. K. P. [2 ]
Van Compernolle, B. [2 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
CONFINEMENT; BEHAVIOR;
D O I
10.1063/1.3695341
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The transport of thermal plasma and fast ions in electrostatic microturbulence is studied. Strong density and potential fluctuations (delta n/n similar to delta phi/kT(e) similar to 0.5, f similar to 5-50 kHz) are observed in the large plasma device (LAPD) [W. Gekelman, H. Pfister, Z. Lucky et al., Rev. Sci. Instrum. 62, 2875 (1991)] in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E x B drift through biasing the obstacle and by modification of the axial magnetic fields (B-z) and the plasma species. Cross-field plasma transport is suppressed with small bias and large B-z and is enhanced with large bias and small B-z. The transition in thermal plasma confinement is well explained by the cross-phase between density and potential fluctuations. Large gyroradius lithium fast ion beam (rho(fast)/rho(s) similar to 10) orbits through the turbulent region. Scans with a collimated analyzer give detailed profiles of the fast ion spatial-temporal distribution. Fast-ion transport decreases rapidly with increasing fast-ion energy and gyroradius. Background waves with different scale lengths also alter the fast ion transport. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. Besides turbulent-wave-induced fast-ion transport, the static radial electric field (E-r) from biasing the obstacle leads to drift of the fast-ion beam centroid. The drift and broadening of the beam due to static E-r are evaluated both analytically and numerically. Simulation results indicate that the E-r induced transport is predominately convective. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695341]
引用
收藏
页数:8
相关论文
共 45 条
  • [21] Behavior of ion acoustic solitons in a two-electron temperature plasma of a multi-pole line cusp plasma device (MPD)
    Shaikh, Zubin
    Patel, A. D.
    Chattopadhyay, P. K.
    Ghosh, Joydeep
    Joshi, H. H.
    Ramasubramanian, N.
    AIP ADVANCES, 2023, 13 (06)
  • [22] Effect of magnetic field ripple on parallel electron transport during microwave plasma heating in the Proto-MPEX linear plasma device
    Caneses, J. F.
    Spong, D. A.
    Lau, C.
    Biewer, T. M.
    Goulding, R. H.
    Bigelow, T. S.
    Caughman, J. B. O.
    Kafle, N.
    Rapp, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [23] Edge transport and turbulence reduction with lithium coated plasma facing components in the National Spherical Torus Experiment
    Canik, J. M.
    Maingi, R.
    Kubota, S.
    Ren, Y.
    Bell, R. E.
    Callen, J. D.
    Guttenfelder, W.
    Kugel, H. W.
    LeBlanc, B. P.
    Osborne, T. H.
    Soukhanovskii, V. A.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [24] Electron-scale turbulence spectra and plasma thermal transport responding to continuous E x B shear ramp-up in a spherical tokamak
    Ren, Y.
    Guttenfelder, W.
    Kaye, S. M.
    Mazzucato, E.
    Bell, R. E.
    Diallo, A.
    Domier, C. W.
    LeBlanc, B. P.
    Lee, K. C.
    Podesta, M.
    Smith, D. R.
    Yuh, H.
    NUCLEAR FUSION, 2013, 53 (08)
  • [25] ASCOT simulations of fast ion power loads to the plasma-facing components in ITER
    Kurki-Suonio, T.
    Asunta, O.
    Hellsten, T.
    Hynonen, V.
    Johnson, T.
    Koskela, T.
    Lonnroth, J.
    Parail, V.
    Roccella, M.
    Saibene, G.
    Salmi, A.
    Sipila, S.
    NUCLEAR FUSION, 2009, 49 (09)
  • [26] Argon ion beam interaction on polyethylene terephthalate surface by a 4 kJ plasma focus device
    Habibi, Morteza
    Alavi, M. H. S.
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (03): : 599 - 607
  • [27] TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks
    Tamain, P.
    Ghendrih, Ph.
    Tsitrone, E.
    Grandgirard, V.
    Garbet, X.
    Sarazin, Y.
    Serre, E.
    Ciraolo, G.
    Chiavassa, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) : 361 - 378
  • [28] Tritium Balance in Large Helical Device during and after the First Deuterium Plasma Experiment Campaign
    Tanaka, Masahiro
    Kato, Hiromi
    Suzuki, Naoyuki
    Masuzaki, Suguru
    Yajima, Miyuki
    Nakada, Miki
    Iwata, Chie
    PLASMA AND FUSION RESEARCH, 2020, 15 (15): : 1 - 7
  • [29] Characterization of isotope effect on ion internal transport barrier and its parameter dependence in the Large Helical Device
    Kobayashi, T.
    Takahashi, H.
    Nagaoka, K.
    Tanaka, K.
    Seki, R.
    Yamaguchi, H.
    Nakata, M.
    Sasaki, M.
    Yoshinuma, M.
    Ida, K.
    NUCLEAR FUSION, 2021, 61 (12)
  • [30] Fast-ion D alpha diagnostic with 3D-supporting FIDASIM in the Large Helical Device
    Fujiwara, Y.
    Kamio, S.
    Yamaguchi, H.
    Garcia, A. V.
    Stagner, L.
    Nuga, H.
    Seki, R.
    Ogawa, K.
    Isobe, M.
    Yokoyama, M.
    Heidbrink, W. W.
    Osakabe, M.
    NUCLEAR FUSION, 2020, 60 (11)