Interval methods of Adams-Bashforth type with variable step sizes

被引:5
作者
Marciniak, Andrzej [1 ,2 ]
Jankowska, Malgorzata A. [3 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, Piotrowo 2, PL-60965 Poznan, Poland
[2] State Univ Appl Sci Kalisz, Dept Comp Sci, Poznanska 201-205, PL-62800 Kalisz, Poland
[3] Poznan Univ Tech, Inst Appl Mech, Jana Pawla II 24, PL-60965 Poznan, Poland
关键词
Initial value problem; Adams-Bashforth methods; Interval Adams-Bashforth methods; Variable step size; Floating-point interval arithmetic;
D O I
10.1007/s11075-019-00774-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a number of our previous papers, we have proposed interval versions of multistep methods (explicit and implicit), including interval predictor-corrector methods, in which the step size was constant. In this paper, we present interval versions of Adams-Bashforth methods with a possibility to change step sizes. This possibility can be used to obtain interval enclosures of the exact solution with a width given beforehand.
引用
收藏
页码:651 / 678
页数:28
相关论文
共 38 条
  • [1] [Anonymous], 1981, INTERVAL ANAL
  • [2] [Anonymous], 1983, Introduction to Numerical Analysis
  • [3] [Anonymous], 2016, INTERVAL ARITHMETIC
  • [4] [Anonymous], COMPUTATIONAL METHOD
  • [5] Berz M, 2006, LECT NOTES COMPUT SC, V3732, P65
  • [6] Berz M., 1998, Reliable Computing, V4, P83, DOI 10.1023/A:1009958918582
  • [7] BUTCHER J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
  • [8] Ceschino F., 1961, Chiffres, V2, P101
  • [9] COLLATZ L, 1959, NUMERICAL TREATMENT
  • [10] Corliss GF, 1996, MATH RES, V90, P228