An improved approximation to the time-dependent Schrodinger equation is developed by correcting the time-dependent self-consistent field ansatz with a Jastrow prefactor defined via a set of variationally determined time-dependent parameters and a linearly independent set of prespecified spatial functions. The method is applicable in any number of dimensions, conserves norm and energy, is without parametric singularities, possesses an internal estimate of the accuracy, and has computational costs that scale algebraically with the number of degrees of freedom. The new formalism is applied to a two-dimensional double well potential to demonstrate the improved accuracy of the method. An extension of the method to electronically nonadiabatic problems is also presented. (C) 1999 American Institute of Physics. [S0021-9606(99)01616-5].
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USALos Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
Tretiak, Sergei
Isborn, Christine M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Chem, Seattle, WA 98195 USALos Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
Isborn, Christine M.
Niklasson, Anders M. N.
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USALos Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
Niklasson, Anders M. N.
Challacombe, Matt
论文数: 0引用数: 0
h-index: 0
机构:
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USALos Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA