Higher Poincare lemma and integrability

被引:8
|
作者
Demessie, G. A. [1 ]
Samann, C. [1 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
DIFFERENTIAL GEOMETRY; GAUGE-THEORY; GERBES;
D O I
10.1063/1.4929537
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the non-abelian Poincare lemma in higher gauge theory in two different ways. That is, we show that every flat local connective structure is gauge trivial. The first method uses a result by Jacobowitz [J. Differ. Geom. 13, 361 (1978)] which states solvability conditions for differential equations of a certain type. The second method extends a proof by Voronov [Proc. Am. Math. Soc. 140, 2855 (2012)] and yields the explicit gauge parameters connecting a flat local connective structure to the trivial one. Finally, we show how higher flatness appears as a necessary integrability condition of a linear system which featured in recently developed twistor descriptions of higher gauge theories. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The exact Poincare Lemma in crystalline cohomology of higher level
    Le Stum, B
    Quirós, A
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 559 - 588
  • [2] The filtered Poincare lemma in higher level (with applications to algebraic groups)
    Le Stum, Bernard
    Quiros, Adolfo
    NAGOYA MATHEMATICAL JOURNAL, 2008, 191 : 79 - 110
  • [3] Logarithmic exact crystalline Poincare lemma of higher level modulo p
    Miyatani, Kazuaki
    JOURNAL OF ALGEBRA, 2016, 451 : 85 - 114
  • [4] Discrete Poincare lemma
    Desbrun, M
    Leok, M
    Marsden, JE
    APPLIED NUMERICAL MATHEMATICS, 2005, 53 (2-4) : 231 - 248
  • [5] On a Poincare lemma for foliations
    Miranda, Eva
    Solha, Romero
    FOLIATIONS 2012, 2013, : 115 - 137
  • [6] ON THE POINCARE LEMMA ON DOMAINS
    Bousquet, Pierre
    Hoang Phuong Nguyen
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 147 (01): : 99 - 163
  • [7] AN A∞ VERSION OF THE POINCARE LEMMA
    Arias Abad, Camilo
    Quintero Velez, Alexander
    Velez Vasquez, Sebastian
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (02) : 385 - 412
  • [8] A singular Poincare lemma
    Miranda, E
    Ngoc, SV
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (01) : 27 - 45
  • [10] Poincare δ-lemma for smooth algebras
    Krasil'shchik, IS
    ACTA APPLICANDAE MATHEMATICAE, 1997, 49 (03) : 249 - 255