Spatial and Spectral Characterization of Human Retinal Pigment Epithelium Fluorophore Families by Ex Vivo Hyperspectral Autofluorescence Imaging

被引:26
作者
Ben Ami, Tal [1 ]
Tong, Yuehong [1 ]
Bhuiyan, Alauddin [1 ]
Huisingh, Carrie [2 ]
Ablonczy, Zsolt [3 ]
Ach, Thomas [4 ]
Curcio, Christine A. [2 ]
Smith, R. Theodore [1 ]
机构
[1] NYU, Dept Ophthalmol, Sch Med, 550 1St Ave, New York, NY 10016 USA
[2] Univ Alabama Birmingham, Dept Ophthalmol, Birmingham, AL USA
[3] Med Univ South Carolina, Dept Ophthalmol, 171 Ashley Ave, Charleston, SC 29425 USA
[4] Univ Hosp Wurzburg, Dept Ophthalmol, Wurzburg, Germany
来源
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY | 2016年 / 5卷 / 03期
基金
美国国家卫生研究院;
关键词
hyperspectral imaging; retinal pigment epithelium; lipofuscin; autofluorescence imaging; bisretinoids; LIPOFUSCIN; FLUORESCENCE; BISRETINOIDS; EYES;
D O I
10.1167/tvst.5.3.5
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Discovery of candidate spectra for abundant fluorophore families in human retinal pigment epithelium (RPE) by ex vivo hyperspectral imaging. Methods: Hyperspectral autofluorescence emission images were captured between 420 and 720 nm (10-nm intervals), at two excitation bands (436-460, 480-510 nm), from three locations (fovea, perifovea, near-periphery) in 20 normal RPE/Bruch's membrane (BrM) flatmounts. Mathematical factorization extracted a BrM spectrum (S0) and abundant lipofuscin/melanolipofuscin (LF/ML) spectra of RPE origin (S1, S2, S3) from each tissue. Results: Smooth spectra S1 to S3, with perinuclear localization consistent with LF/ML at all three retinal locations and both excitations in 14 eyes (84 datasets), were included in the analysis. The mean peak emissions of S0, S1, and S2 at lambda(ex) 436 nm were, respectively, 495 6 14, 535 6 17, and 576 6 20 nm. S3 was generally trimodal, with peaks at either 580, 620, or 650 nm (peak mode, 650 nm). At lambda(ex) 480 nm, S0, S1, and S2 were red-shifted to 526 6 9, 553 6 10, and 588 6 23 nm, and S3 was again trimodal (peak mode, 620 nm). S1 often split into two spectra, S1A and S1B. S3 strongly colocalized with melanin. There were no significant differences across age, sex, or retinal location. Conclusions: There appear to be at least three families of abundant RPE fluorophores that are ubiquitous across age, retinal location, and sex in this sample of healthy eyes. Further molecular characterization by imaging mass spectrometry and localization via super-resolution microscopy should elucidate normal and abnormal RPE physiology involving fluorophores.
引用
收藏
页数:10
相关论文
共 45 条
  • [21] In vivo imaging of retinal pigment epithelium cells in age related macular degeneration
    Rossi, Ethan A.
    Rangel-Fonseca, Piero
    Parkins, Keith
    Fischer, William
    Latchney, Lisa R.
    Folwell, Margaret A.
    Williams, David R.
    Dubra, Alfredo
    Chung, Mina M.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (11): : 2527 - 2539
  • [22] In Situ Morphologic and Spectral Characterization of Retinal Pigment Epithelium Organelles in Mice Using Multicolor Confocal Fluorescence Imaging
    Meleppat, Ratheesh K.
    Ronning, Kaitryn E.
    Karlen, Sarah J.
    Kothandath, Karuna K.
    Burns, Marie E.
    Pugh, Edward N., Jr.
    Zawadzki, Robert J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (13)
  • [23] Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics
    Liu, Tao
    Jung, HaeWon
    Liu, Jianfei
    Droettboom, Michael
    Tam, Johnny
    BIOMEDICAL OPTICS EXPRESS, 2017, 8 (10): : 4348 - 4360
  • [24] Hyperspectral Imaging for In-Vivo/Ex-Vivo Tissue Analysis of Human Brain Cancer
    Leon, Raquel
    Gelado, Sofia H.
    Fabelo, Himar
    Ortega, Samuel
    Quintana, Laura
    Szolna, Adam
    Pineiro, Juan F.
    Balea-Fernandez, Francisco
    Morera, Jesus
    Clavo, Bernardino
    Callico, Gustavo M.
    MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2022, 12034
  • [25] Optimization of In Vivo Confocal Autofluorescence Imaging of the Ocular Fundus in Mice and Its Application to Models of Human Retinal Degeneration
    Issa, Peter Charbel
    Singh, Mandeep S.
    Lipinski, Daniel M.
    Chong, Ngaihang V.
    Delori, Francois C.
    Barnard, Alun R.
    MacLaren, Robert E.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (02) : 1066 - 1075
  • [26] Ex-vivo UV autofluorescence imaging and fluorescence spectroscopy of atherosclerotic pathology in human aorta
    Lewis, William
    Williams, Maura
    Franco, Walfre
    DIAGNOSTIC AND THERAPEUTIC APPLICATIONS OF LIGHT IN CARDIOLOGY, 2017, 10042
  • [27] Characterization of Chloride Channels in Human Embryonic Stem Cell Derived Retinal Pigment Epithelium
    Korkka, I.
    Johansson, J. K.
    Skottman, H.
    Hyttinen, J.
    Nymark, S.
    EMBEC & NBC 2017, 2018, 65 : 454 - 457
  • [28] Comparison of photosensitizing effect of lipofuscin granules from retinal pigment epithelium of human donor eyes and their fluorophore A2E
    Dontsov A.E.
    Sakina N.L.
    Bilinska B.
    Krzyzanowski L.
    Feldman T.B.
    Ostrovsky M.A.
    Doklady Biochemistry and Biophysics, 2005, 405 (1-6) : 458 - 460
  • [29] Imaging human retinal pigment epithelium cells using adaptive optics optical coherence tomography
    Liu, Zhuolin
    Kocaoglu, Omer P.
    Turner, Timothy L.
    Miller, Donald T.
    OPHTHALMIC TECHNOLOGIES XXVI, 2016, 9693
  • [30] Characterization of the effects of retinal pigment epithelium-conditioned media on porcine and aged human retina
    Kolomeyer, A. M.
    Sugino, I. K.
    Zarbin, M. A.
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2013, 251 (06) : 1515 - 1528