Proton Storage in Metallic H1.75MoO3 Nanobelts through the Grotthuss Mechanism

被引:74
作者
Xu, Wangwang [1 ]
Zhao, Kangning [8 ,9 ,10 ]
Liao, Xiaobin [2 ]
Sun, Congli [2 ]
He, Kun [3 ]
Yuan, Yifei [3 ,4 ]
Ren, Wenhao [5 ]
Li, Jiantao [4 ]
Li, Tianyi [6 ]
Yang, Chao [7 ]
Cheng, Hongwei [8 ,9 ,10 ]
Sun, Qiangchao [8 ,9 ,10 ]
Manke, Ingo [7 ]
Lu, Xionggang [8 ,9 ,10 ]
Lu, Jun [4 ,11 ]
机构
[1] China Three Gorges Univ, Coll Mat & Chem Engn, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Key Lab Inorgan Nonmet Crystalline & Energy Conver, Yichang 443002, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Wenzhou Univ, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[4] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[5] Ecole Polytech Fed Lausanne EPFL, Inst Chem Sci & Engn, ISIC LSCI, CH-1015 Lausanne, Switzerland
[6] Argonne Natl Lab, Adv Photon Sources, Lemont, IL 60439 USA
[7] Helmholtz Ctr Berlin Mat & Energy, D-14109 Berlin, Germany
[8] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai 200444, Peoples R China
[9] Shanghai Univ, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[10] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[11] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDRONIUM-ION BATTERIES; ENERGY-STORAGE; INTERCALATION; ELECTROLYTE; CONDUCTION; OXIDE;
D O I
10.1021/jacs.2c03844
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The proton, as the cationic form of the lightest element-H, is regarded as most ideal charge carrier in "rocking chair " batteries. However, current research on proton batteries is still at its infancy, and they usually deliver low capacity and suffer from severe acidic corrosion. Herein, electrochemically activated metallic H1.75MoO3 nanobelts are developed as a stable electrode for proton storage. The electrochemically pre-intercalated protons not only bond directly with the terminal O3 site via strong O-H bonds but also interact with the oxygens within the adjacent layers through hydrogen bonding, forming a hydrogen-bonding network in H1.75MoO3 nanobelts and enabling a diffusion-free Grotthuss mechanism as a result of its ultralow activation energy of & SIM;0.02 eV. To the best of our knowledge, this is the first reported inorganic electrode exhibiting Grotthuss mechanism-based proton storage. Additionally, the proton intercalation into MoO3 with formation of H1.75MoO3 induces strong Jahn-Teller electron-phonon coupling, rendering a metallic state. As a consequence, the H1.75MoO3 shows an outstanding fast charging performance and maintains a capacity of 111 mAh/g at 2500 C, largely outperforming the state-of-art battery electrodes. More importantly, a symmetric proton ion full cell based on H1.75MoO3 was assembled and delivered an energy density of 14.7 Wh/kg at an ultrahigh power density of 12.7 kW/kg, which outperforms those of fast charging supercapacitors and lead-acid batteries.
引用
收藏
页码:17407 / 17415
页数:9
相关论文
共 47 条
[21]   Where Do Batteries End and Supercapacitors Begin? [J].
Simon, Patrice ;
Gogotsi, Yury ;
Dunn, Bruce .
SCIENCE, 2014, 343 (6176) :1210-1211
[22]   Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO3 films [J].
SrinivasaRao, K. ;
Kanth, B. Rajini ;
Mukhopadhyay, P. K. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (04) :985-990
[23]   Ultrahigh Areal Capacity Hydrogen-Ion Batteries with MoO3 Loading Over 90 mg cm-2 [J].
Su, Zhen ;
Ren, Wenhao ;
Guo, Haocheng ;
Peng, Xuancheng ;
Chen, Xianjue ;
Zhao, Chuan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (46)
[24]   High-Voltage Cycling Induced Thermal Vulnerability in LiCoO2 Cathode: Cation Loss and Oxygen Release Driven by Oxygen Vacancy Migration [J].
Sun, Congli ;
Liao, Xiaobin ;
Xia, Fanjie ;
Zhao, Yan ;
Zhang, Lei ;
Mu, Sai ;
Shi, Shanshan ;
Li, Yanxi ;
Peng, Haoyang ;
Van Tendeloo, Gustaaf ;
Zhao, Kangning ;
Wu, Jinsong .
ACS NANO, 2020, 14 (05) :6181-6190
[25]   Proton Insertion Chemistry of a Zinc-Organic Battery [J].
Tie, Zhiwei ;
Liu, Luojia ;
Deng, Shenzhen ;
Zhao, Dongbing ;
Niu, Zhiqiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (12) :4920-4924
[26]   Reversible (De)Intercalation of Hydrated Zn2+in Mg2+-Stabilized V2O5Nanobelts with High Areal Capacity [J].
Wang, Na ;
Sun, Congli ;
Liao, Xiaobing ;
Yuan, Yifei ;
Cheng, Hongwei ;
Sun, Qiangchao ;
Wang, Bingliang ;
Pan, Xuelei ;
Zhao, Kangning ;
Xu, Qian ;
Lu, Xionggang ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2020, 10 (41)
[27]   Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage [J].
Wang, Xianfu ;
Xie, Yiming ;
Tang, Kai ;
Wang, Chao ;
Yan, Chenglin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (36) :11569-11573
[28]   Hydronium-Ion Batteries with Perylenetetracarboxylic Dianhydride Crystals as an Electrode [J].
Wang, Xingfeng ;
Bommier, Clement ;
Jian, Zelang ;
Li, Zhifei ;
Chandrabose, Raghu S. ;
Rodriguez-Perez, Ismael A. ;
Greaney, P. Alex ;
Ji, Xiulei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (11) :2909-2913
[29]   Hydrogen motion in oxides: from insulators to bronzes [J].
Whittingham, MS .
SOLID STATE IONICS, 2004, 168 (3-4) :255-263
[30]   Tuning Intrinsic and Extrinsic Proton Conduction in Metal-Organic Frameworks by the Lanthanide Contraction [J].
Wong, Norman E. ;
Ramaswamy, Padmini ;
Lee, Andrew S. ;
Gelfand, Benjamin S. ;
Bladek, Kamila J. ;
Taylor, Jared M. ;
Spasyuk, Denis M. ;
Shimizu, George K. H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (41) :14676-14683