Front contact optimization of industrial scale CIGS solar cells for low solar concentration using 2D physical modeling

被引:10
作者
Delgado-Sanchez, Jose-Maria [1 ]
Lopez-Gonzalez, Juan M. [2 ]
Orpella, Albert [2 ]
Sanchez-Cortezon, Emilio [2 ]
Alba, Maria D. [3 ]
Lopez-Lopez, Carmen [1 ]
Alcubilla, Ramon [2 ]
机构
[1] Abengoa, C Energia Solar 1, Seville 41014, Spain
[2] Univ Politecn Cataluna, Dept Engn Elect, Micro & Nano Technol Grp, C Jordi Girona 1-3,Modul C4, ES-08034 Barcelona, Spain
[3] Inst Ciencia Mat Sevilla CSIC US, Avda Amer Vespuccio 49, Seville 41092, Spain
关键词
Concentrating solar power; Concentrator; Thin-film; Solar energy; Photovoltaic cells; Semiconductor device modeling; EFFICIENCY; PERFORMANCE;
D O I
10.1016/j.renene.2016.08.046
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cu(In,Ga)Se-2 (CIGS) technology is one of the best absorber materials with record efficiencies among photovoltaic thin-film technologies (22.3% at lab scale and 16% at large commercial module). Although research on this material was originally motivated by low-cost, glass-glass applications focusing to fixed photovoltaic structures, the high efficiency values make CIGS an interesting alternative for low concentration systems. In this paper a 2D model for Cu(In,Ga)Se-2 (CIGS) solar cells under low solar concentration is described and contrasted with experimental data. Using simulation, the effect of front electric contact design parameters: finger width, finger separation, and number of buses are analyzed for solar concentrations from 1 up to 10 suns. Efficiency maps allowing front contact grid optimization are shown and analyzed for each concentration factor (Cx), assessing the viability of CIGS solar cells for low concentration applications, where commercial CIGS solar cells may exhibit 35% of electrical power increases with proper front grid optimization under low concentration respect to conventional grid design. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:90 / 95
页数:6
相关论文
共 22 条
[1]   Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS [J].
Chelvanathan, Puvaneswaran ;
Hossain, Mohammad Istiaque ;
Amin, Nowshad .
CURRENT APPLIED PHYSICS, 2010, 10 (03) :S387-S391
[2]   Analytical versus numerical analysis of back grading in CIGS solar cells [J].
Decock, Koen ;
Khelifi, Samira ;
Burgelman, Marc .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (06) :1550-1554
[3]   Improving solar cell efficiency with optically optimised TCO layers [J].
Fleischer, K. ;
Arca, E. ;
Shvets, I. V. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 101 :262-269
[4]   Investigation of compositional inhomogeneities in complex polycrystalline Cu(In,Ga)Se2 layers for solar cells [J].
Fontane, X. ;
Izquierdo-Roca, V. ;
Calvo-Barrio, L. ;
Perez-Rodriguez, A. ;
Morante, J. R. ;
Guettler, Dominik ;
Eicke, A. ;
Tiwari, A. N. .
APPLIED PHYSICS LETTERS, 2009, 95 (26)
[5]   Optical properties of CdS thin films [J].
Gilic, M. ;
Trajic, J. ;
Romcevic, N. ;
Romcevic, M. ;
Timotijevic, D. V. ;
Stanisic, G. ;
Yahia, I. S. .
OPTICAL MATERIALS, 2013, 35 (05) :1112-1117
[6]   Efficiency limitations for wide-band-gap chalcopyrite solar cells [J].
Gloeckler, M ;
Sites, JR .
THIN SOLID FILMS, 2005, 480 :241-245
[7]  
Gloeckler M., 2005, THESIS
[8]  
Hack M., 1990, Extended Abstracts of the 22nd (1990 International) Conference on Solid State Devices and Materials, P999
[9]   Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling [J].
Huang, Chia-Hua .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (2-3) :330-334
[10]   Progress in chalcopyrite compound semiconductor research for photovoltaic applications and transfer of results into actual solar cell production [J].
Jager-Waldau, Arnulf .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (06) :1509-1517