Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory

被引:0
作者
Wohlfeld, K. [1 ,2 ,3 ]
Chen, Cheng-Chien [4 ]
van Veenendaal, M. [4 ,5 ]
Devereaux, T. P. [1 ,2 ]
机构
[1] SLAC Natl Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Menlo Pk, CA 94025 USA
[3] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-02093 Warsaw, Poland
[4] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[5] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
关键词
HUBBARD-MODEL; STATE;
D O I
10.12693/APhysPolA.127.201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation, we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N = 2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.
引用
收藏
页码:201 / 203
页数:3
相关论文
共 50 条
[31]   Hierarchical equations of motion for an impurity solver in dynamical mean-field theory [J].
Hou, Dong ;
Wang, Rulin ;
Zheng, Xiao ;
Tong, NingHua ;
Wei, JianHua ;
Yan, YiJing .
PHYSICAL REVIEW B, 2014, 90 (04)
[32]   Embedding approach for dynamical mean-field theory of strongly correlated heterostructures [J].
Ishida, H. ;
Liebsch, A. .
PHYSICAL REVIEW B, 2009, 79 (04)
[33]   Relativistic mean-field approach for Λ, Ξ, and Σ hypernuclei [J].
Liu, Z. -X. ;
Xia, C. -J. ;
Lu, W. -L. ;
Li, Y. -X. ;
Hu, J. N. ;
Sun, T. -T. .
PHYSICAL REVIEW C, 2018, 98 (02)
[34]   Slave-Boson Mean-Field Theory of Spin- and Orbital- Ordered States in the Degenerate Hubbard Model [J].
Hideo Hasegawa .
Foundations of Physics, 2000, 30 :2061-2078
[35]   Impurity problems for steady-state nonequilibrium dynamical mean-field theory [J].
Freericks, J. K. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (03) :520-524
[36]   Single-A hypernuclei in the relativistic mean-field theory with parameter set FSU [J].
Xu, Renli ;
Wu, Chen ;
Ren, Zhongzhou .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2012, 39 (08)
[37]   Charmed hypernuclei within density-dependent relativistic mean-field theory [J].
Yang, Wei ;
Ding, Shi Yuan ;
Sun, Bao Yuan .
PHYSICAL REVIEW C, 2024, 110 (05)
[38]   Efficient treatment of two-particle vertices in dynamical mean-field theory [J].
Kunes, Jan .
PHYSICAL REVIEW B, 2011, 83 (08)
[39]   Cluster solver for dynamical mean-field theory with linear scaling in inverse temperature [J].
Khatami, E. ;
Lee, C. R. ;
Bai, Z. J. ;
Scalettar, R. T. ;
Jarrell, M. .
PHYSICAL REVIEW E, 2010, 81 (05)
[40]   Strange hadronic stars in relativistic mean-field theory with the FSUGold parameter set [J].
Wu, Chen ;
Ren, Zhongzhou .
PHYSICAL REVIEW C, 2011, 83 (02)