A Nash Solution to Predictive Control Problem for Power Systems

被引:0
|
作者
Ahn, Choon Ki [1 ]
Lee, Chul Dong [2 ]
Song, Moon Kyou [3 ]
机构
[1] Seoul Natl Univ Sci & Technol, Dept Automot Engn, Seoul 139743, South Korea
[2] Korea Elect Technol Inst, Jeonbuk Embedded Syst Res Ctr, Wanju Gun 565902, Jeonbuk, South Korea
[3] Wonkwang Univ, Div Elect & Control Engn, Iksan 570749, South Korea
关键词
Power Systems; Voltage Regulation; Nash Solution; Predictive Control; Nonlinear Control;
D O I
10.1166/asl.2011.1887
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we provide a Nash solution to predictive control problem for power systems consisting of a hydraulic turbine and a synchronous generator. In contrast to standard control methods for power systems, our design scheme is based on Nash short-time horizon predictive control concept in the feedback linearization framework. The proposed control law will be shown to optimally and exponentially regulate the terminal voltage, the rotor angle, and the rotor speed to the reference values. It is shown via numerical example that the proposed control law is more robust than standard control methods for power systems.
引用
收藏
页码:3740 / 3745
页数:6
相关论文
共 50 条
  • [31] OVERRIDE CONFIGURATION OF GENERALIZED PREDICTIVE CONTROL FOR A MULTIPURPOSE CONTROL PROBLEM
    SHIMIZU, K
    NAKAMOTO, M
    CONTROL ENGINEERING PRACTICE, 1995, 3 (03) : 383 - 388
  • [32] Convexity Properties of the Model Predictive Control Problem for Subclasses of Multilinear Time-Invariant Systems
    Lautenschlager, Bjoern
    Kruppa, Kai
    Lichtenberg, Gerwald
    IFAC PAPERSONLINE, 2015, 48 (23): : 148 - 153
  • [33] Market based Frequency Control in Power Systems: The Multi-Period Problem
    Perninge, Magnus
    Eriksson, Robert
    IFAC PAPERSONLINE, 2018, 51 (28): : 468 - 473
  • [34] Comprehensive study of finite control set model predictive control algorithms for power converter control in microgrids
    Aghdam, Mahlagha Mahdavi
    Li, Li
    Zhu, Jianguo
    IET SMART GRID, 2020, 3 (01) : 1 - 10
  • [35] Model predictive control for grinding systems
    Niemi, AJ
    Tian, L
    Ylinen, R
    CONTROL ENGINEERING PRACTICE, 1997, 5 (02) : 271 - 278
  • [36] Model Predictive Control of Descriptor Systems
    Nosrati, Komeil
    Belikov, Juri
    Tepljakov, Aleksei
    Petlenkov, Eduard
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2139 - 2144
  • [37] Predictive control, embedded cyberphysical systems and systems of systems - A perspective
    Lucia, Sergio
    Koegel, Markus
    Zometa, Pablo
    Quevedo, Daniel E.
    Findeisen, Rolf
    ANNUAL REVIEWS IN CONTROL, 2016, 41 : 193 - 207
  • [38] A Synthesis Approach to Predictive Control for Networked Control Systems
    Zou, Yuanyuan
    Lam, James
    Niu, Yugang
    Li, Dewei
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 7715 - 7720
  • [39] Distributed model predictive control for wide area measurement power systems under malicious attacks
    Liu, Andong
    Bai, Liye
    IET CYBER-PHYSICAL SYSTEMS: THEORY & APPLICATIONS, 2018, 3 (03) : 111 - 118
  • [40] Robust Model Predictive Control of Gate-Controlled Series Capacitor for LFC of Power Systems
    Oshnoei, Arman
    Kheradmandi, Morteza
    Khezri, Rahmat
    Mahmoudi, Amin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4766 - 4776