Rheological properties of Al2O3-CaO-SiO2 slags

被引:5
作者
Tang, Kai [1 ]
van der Eijk, Casper [1 ]
Gouttebroze, Sylvain [2 ]
Du, Qiang [2 ]
Safarian, Jafar [3 ]
Tranell, Gabriella [3 ]
机构
[1] SINTEF Ind, N-7465 Trondheim, Norway
[2] SINTEF Ind, N-0314 Oslo, Norway
[3] Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, Trondheim, Norway
来源
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY | 2022年 / 77卷
基金
欧盟地平线“2020”;
关键词
Al2O3-CaO-SiO2; Viscosity; Phenomenological model; Vogel-Fulcher-Tammann formalism; TTT; CCT; SILICATE MELTS; PART I; VISCOSITY; LIQUIDS; BINARY; MODEL; TRANSFORMATIONS; RECOVERY; KINETICS; SYSTEMS;
D O I
10.1016/j.calphad.2022.102421
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Al2O3-CaO-SiO2 ternary is a basic oxide system relevant for the Pedersen alumina production process and for aluminothermic silicon production with low environmental impact using secondary aluminium and silica raw materials. Rheological property is one of the most important properties for the above applications. A phenomenological viscosity model, inspired by the Calphad technique, has been proposed for the description of the rheological properties covering from homogenous liquid to heterogenous partial solidified Al2O3-CaO-SiO2 slags. The model has been developed by modification of the well-known Vogel-Fulcher-Tammann (VFT) formalism. Based on the phenomenological viscosity model, the effective diffusivity of slag can be evaluated. The relationships between cooling temperature rate, incubation time of solid precipitates as well as transition temperature have then been estimated. The model calculated the isothermal time-temperature-transformation (TTT) and the non-isothermal continuous-cooling-transformation (CCT) curves of CaAl2O4 and anorthite phases are in good agreement with the experimental observations.
引用
收藏
页数:6
相关论文
共 52 条
[1]   Relaxation in glassforming liquids and amorphous solids [J].
Angell, CA ;
Ngai, KL ;
McKenna, GB ;
McMillan, PF ;
Martin, SW .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) :3113-3157
[2]  
[Anonymous], 1995, Slag Atlas, V2nd
[3]   FactSage thermochemical software and databases - recent developments [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Robelin, C. ;
Petersen, S. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (02) :295-311
[4]   Energy recovery from high temperature slags [J].
Barati, M. ;
Esfahani, S. ;
Utigard, T. A. .
ENERGY, 2011, 36 (09) :5440-5449
[5]   A Commentary on: "Reaction Kinetics in Processes of Nucleation and Growth" [J].
Barmak, Katayun .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2018, 49 (06) :3616-3680
[6]  
Blomquist R.A., 1978, Viscosity of molten alumina
[7]   TRANSFORMATION KINETICS DURING CONTINUOUS COOLING [J].
CAHN, JW .
ACTA METALLURGICA, 1956, 4 (06) :572-575
[8]   The Importance of Slag Engineering in Freeze-Lining Applications [J].
Campforts, Mieke ;
Blanpain, Bart ;
Wollants, Patrick .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2009, 40 (05) :643-655
[9]   Viscosity of high crystal content melts: Dependence on solid fraction [J].
Costa, A .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) :1-5
[10]  
Cramb A.W., 2003, 9903 TRP AM IR STEEL