Factorization of sequences in discrete Hardy spaces

被引:2
作者
Boza, Santiago [1 ]
机构
[1] Univ Politecn Cataluna, EPSEVG, Dept Appl Math 4, E-08880 Vilanova I La Geltru, Spain
关键词
Hardy spaces; discrete Hilbert transform; commutator; BMO; DISTRIBUTIONS; HP;
D O I
10.4064/sm209-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to obtain a discrete version for the Hardy spaces H-P(Z) of the weak factorization results obtained for the real Hardy spaces H-P(R-n) by Coifman, Rochberg and Weiss for p > n/(n + 1), and by Miyachi for p <= n/(n + 1). It represents an extension, in the one-dimensional case, of the corresponding result by A. Uchiyama who obtained a factorization theorem in the general context of spaces X of homogeneous type, but with some restrictions on the measure that exclude the case of points of positive measure on X and, hence, Z. In order to obtain the factorization theorem, we first study the boundedness of some bilinear maps defined on discrete Hardy spaces.
引用
收藏
页码:53 / 69
页数:17
相关论文
共 17 条
[1]  
Alphonse A. M., 1994, CONT MATH AM MATH SO, V189, P25
[2]   Hardy spaces on ZN [J].
Boza, S ;
Carro, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :25-43
[3]  
Boza S, 1998, STUD MATH, V129, P31
[4]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[5]   Affine Synthesis onto Lebesgue and Hardy Spaces [J].
Bui, H-Q. ;
Laugesen, R. S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) :2203-2233
[6]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[7]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[8]   TRIEBEL-LIZORKIN SPACES ON SPACES OF HOMOGENEOUS TYPE [J].
HAN, YS .
STUDIA MATHEMATICA, 1994, 108 (03) :247-273
[9]   Inequalities for discrete Hardy spaces [J].
Kanjin, Y ;
Satake, M .
ACTA MATHEMATICA HUNGARICA, 2000, 89 (04) :301-313
[10]   DECOMPOSITION INTO ATOMS OF DISTRIBUTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
MACIAS, RA ;
SEGOVIA, C .
ADVANCES IN MATHEMATICS, 1979, 33 (03) :271-309