Influencing the martensitic phase transformation in NiTi through point defects

被引:20
作者
Tehrani, A. Mansouri [1 ]
Shahrokhshahi, H. [2 ]
Parvin, N. [2 ]
Brgoch, J. [1 ]
机构
[1] Univ Houston, Dept Chem, Houston, TX 77204 USA
[2] Amirkabir Univ Technol, Dept Min & Met Engn, Tehran, Iran
关键词
SHAPE-MEMORY ALLOYS; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; CHEMICAL-COMPOSITION; LATTICE STABILITY; TI ALLOY; 2D MODEL; TRANSITION; SIMULATION; SYSTEM;
D O I
10.1063/1.4923474
中图分类号
O59 [应用物理学];
学科分类号
摘要
Equiatomic nickel-titanium (NiTi) is investigated to determine the consequences of point defects on the Martensitic phase transformation. Using molecular dynamics simulations, NiTi with 0.1%, 0.5%, 1%, 2%, and 3% of Schottky-type defects (vacancies) have been modeled with the temperature of structural transformation elucidated. Increasing the concentration of point defects leads to the transformation occurring at lower temperatures than the perfect structure while the final monoclinic unit cell angle (gamma) substantially decreases. Modeling anti-site defects at the 0.1%, 0.5%, and 1% concentration level indicates the cubic to monoclinic structural transformation temperature decreases even faster with a more dramatic change in gamma compared to the vacancy structure. The change in the Martensitic transformation stems from pinning due to the structural defects. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Fatigue performance of superelastic NiTi near stress-induced martensitic transformation [J].
Alarcon, Eduardo ;
Heller, Ludek ;
Chirani, Shabnam Arbab ;
Sittner, Petr ;
Kopecek, Jaromir ;
Saint-Sulpice, Luc ;
Calloch, Sylvain .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 95 :76-89
[32]   R-phase transformation in NiTi alloys [J].
Wang, X. B. ;
Verlinden, B. ;
Van Humbeeck, J. .
MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (13A) :1517-1529
[33]   Transformation intervals and elastic strain energies of B2-B19′ martensitic transformation of NiTi [J].
Meng, Qinglin ;
Yang, Hong ;
Liu, Yinong ;
Nam, Tae-hyun .
INTERMETALLICS, 2010, 18 (12) :2431-2434
[34]   A review on phase field modeling of martensitic phase transformation [J].
Mamivand, Mahmood ;
Zaeem, Mohsen Asle ;
El Kadiri, Haitham .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 77 :304-311
[35]   Influence of carbon on martensitic phase transformations in NiTi shape memory alloys [J].
Frenzel, J. ;
Zhang, Z. ;
Somsen, Ch. ;
Neuking, K. ;
Eggeler, G. .
ACTA MATERIALIA, 2007, 55 (04) :1331-1341
[36]   Micromechanism of Cu and Fe alloying process on the martensitic phase transformation of NiTi-based alloys: First-principles calculation [J].
Yin, J. Y. ;
Li, G. F. ;
Si, Y. L. ;
Ying, G. ;
Peng, P. .
JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 56 (06) :1051-1057
[37]   Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation [J].
Zhu, Jiaming ;
Wu, Hong-Hui ;
Wu, Yuan ;
Wang, Haoliang ;
Zhang, Tianlong ;
Xiao, Hu ;
Wang, Yunzhi ;
Shi, San-Qiang .
ACTA MATERIALIA, 2021, 207
[38]   Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy [J].
Bin Li ;
Shen, Yidi ;
An, Qi .
ACTA MATERIALIA, 2020, 199 :240-252
[39]   Effect of grain boundary segregations on martensitic transformation temperatures in NiTi bi-crystals [J].
Babicheva, R., I ;
Semenov, A. S. ;
Dmitriev, S., V ;
Zhou, K. .
LETTERS ON MATERIALS, 2019, 9 (02) :162-167
[40]   Luders-like deformation associated with stress-induced martensitic transformation in NiTi [J].
Tan, G ;
Liu, YN ;
Sittner, P ;
Saunders, M .
SCRIPTA MATERIALIA, 2004, 50 (02) :193-198