Robust function projective synchronization of two different chaotic systems with unknown parameters

被引:16
作者
Du, Hongyue [1 ]
Li, Feng [2 ]
Meng, Guangshi [3 ]
机构
[1] Harbin Univ Sci & Technol, Sch Automat, Harbin 150080, Peoples R China
[2] Beijing Capital Int Airport Co Ltd, Dept Informat Technol, Beijing 100621, Peoples R China
[3] Heilongjiang Comp Ctr, Harbin 150036, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2011年 / 348卷 / 10期
关键词
UNCERTAIN PARAMETERS; OSCILLATORS; PHASE;
D O I
10.1016/j.jfranklin.2011.08.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the function projective synchronization problem of two different chaotic systems with unknown and perturbed parameters. The parameter perturbations are assumed to appear in both drive and response systems, which perturbed about the nominal parameter values. A new robust function projective synchronization method is proposed, which is able to overcome random uncertainties of all model parameters. Corresponding numerical simulations are performed to verify and illustrate the analytical results. (C) 2011 The Franklin Institute. Published by Elsevier Ltd. Allrights reserved.
引用
收藏
页码:2782 / 2794
页数:13
相关论文
共 23 条
[1]   The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems [J].
Chen, Yong ;
An, Hongli ;
Li, Zhibin .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 197 (01) :96-110
[2]   Function projective synchronization between two identical chaotic systems [J].
Chen, Yong ;
Li, Xin .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (05) :883-888
[3]   Function projective synchronization of different chaotic systems with uncertain parameters [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong .
PHYSICS LETTERS A, 2008, 372 (33) :5402-5410
[4]   Function projective synchronization in coupled chaotic systems [J].
Du, Hongyue ;
Zeng, Qingshuang ;
Wang, Changhong ;
Ling, Mingxiang .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :705-712
[5]  
Du HY, 2009, INT J INNOV COMPUT I, V5, P2239
[6]   Propagation of projective synchronization in a series connection of chaotic systems [J].
Grassi, Giuseppe .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (02) :438-451
[7]   An approach to chaotic synchronization [J].
Hramov, AE ;
Koronovskii, AA .
CHAOS, 2004, 14 (03) :603-610
[8]   Adaptive synchronization for delayed neural networks with stochastic perturbation [J].
Li, Xiaolin ;
Cao, Jinde .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2008, 345 (07) :779-791
[9]   Projective synchronization in three-dimensional chaotic systems [J].
Mainieri, R ;
Rehacek, J .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3042-3045
[10]   Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters [J].
Park, Ju H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) :288-293