An introduction to Markov chain Monte Carlo methods

被引:0
|
作者
Besag, J [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING | 2004年 / 138卷
关键词
autologistic distribution; Bayesian computation; Gibbs sampler; Hastings algorithm; hidden Markov models; importance sampling; Ising model; Markov chain Monte Carlo; Markov random fields; maximum likelihood estimation; Metropolis method; noisy binary channel; perfect simulation; reversibility; simulated annealing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This article provides an introduction to Markov chain Monte Carlo methods in statistical inference. Over the past twelve years or so, these have revolutionized what can be achieved computationally, especially in the Bayesian paradigm. Markov chain Monte Carlo has exactly the same goals as ordinary Monte Carlo and both are intended to exploit the fact that one can learn about a complex probability distribution if one can sample from it. Although the ordinary version can only rarely be implemented, it is convenient initially to presume otherwise and to focus on the rationale of the sampling approach, rather than computational details. The article then moves on to describe implementation via Markov chains, especially the Hastings algorithm, including the Metropolis method and the Gibbs sampler as special cases. Hidden Markov models and the autologistic distribution receive some emphasis, with the noisy binary channel used in some toy examples. A brief description of perfect simulation is also given. The account concludes with some discussion.
引用
收藏
页码:247 / 270
页数:24
相关论文
共 50 条
  • [1] The Evolution of Markov Chain Monte Carlo Methods
    Richey, Matthew
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (05): : 383 - 413
  • [2] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [3] A simple introduction to Markov Chain Monte-Carlo sampling
    van Ravenzwaaij, Don
    Cassey, Pete
    Brown, Scott D.
    PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 143 - 154
  • [4] MARGINAL MARKOV CHAIN MONTE CARLO METHODS
    van Dyk, David A.
    STATISTICA SINICA, 2010, 20 (04) : 1423 - 1454
  • [5] Markov chain Monte Carlo methods2. The Markov chain case
    K. B. Athreya
    Mohan Delampady
    T. Krishnan
    Resonance, 2003, 8 (7) : 63 - 75
  • [6] LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS
    Kamatani, Kengo
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 713 - 725
  • [7] SEQUENTIALLY INTERACTING MARKOV CHAIN MONTE CARLO METHODS
    Brockwell, Anthony
    Del Moral, Pierre
    Doucet, Arnaud
    ANNALS OF STATISTICS, 2010, 38 (06): : 3387 - 3411
  • [8] Unbiased Markov chain Monte Carlo methods with couplings
    Jacob, Pierre E.
    O'Leary, John
    Atchade, Yves F.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (03) : 543 - 600
  • [9] Markov Chain Monte Carlo Methods in Financial Econometrics
    Michael Verhofen
    Financial Markets and Portfolio Management, 2005, 19 (4): : 397 - 405
  • [10] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980