Minimal surfaces in a cone

被引:5
|
作者
López, FJ [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
minimal surfaces; maximum principle;
D O I
10.1023/A:1012451110396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the convex hull property for properly immersed minimal hypersurfaces in a cone of bb R-n. We deal with the existence of new barriers for the maximum principle application in noncompact truncated tetrahedral domains of bb R-3, describing the space of such domains admitting barriers of this kind. Nonexistence results for nonflat minimal surfaces whose boundary lies in opposite faces of a tetrahedral domain are obtained. Finally, new simple closed subsets of bb R-3 which have the property of intersecting any properly immersed minimal surface are shown.
引用
收藏
页码:253 / 299
页数:47
相关论文
共 50 条
  • [1] Minimal Surfaces in a Cone
    Francisco J. López
    Annals of Global Analysis and Geometry, 2001, 20 : 253 - 299
  • [2] Minimal diffeomorphism between hyperbolic surfaces with cone singularities
    Toulisse, Jeremy
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2019, 27 (05) : 1163 - 1203
  • [3] RIGIDITY OF MINIMAL LAGRANGIAN DIFFEOMORPHISMS BETWEEN SPHERICAL CONE SURFACES
    El Emam, Christian
    Seppi, Andrea
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2022, 9 : 581 - 600
  • [4] Minimal nets and minimal minimal surfaces
    de Campo, Liliana
    Delgado-Friedrichs, Olaf
    Hyde, Stephen T.
    O'Keeffe, Michael
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2013, 69 : 483 - 489
  • [5] Minimal Surfaces
    Neuberger, J. W.
    SOBOLEV GRADIENTS AND DIFFERENTIAL EQUATIONS, SECOND EDITION, 2010, 1670 : 129 - 145
  • [6] Capillary surfaces in a cone
    Lopez, Rafael
    Pyo, Juncheol
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 256 - 262
  • [7] Surfaces in the lightlike cone
    Liu, H. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1171 - 1181
  • [8] Approximation of developable surfaces with cone spline surfaces
    Leopoldseder, S
    Pottmann, H
    COMPUTER-AIDED DESIGN, 1998, 30 (07) : 571 - 582
  • [9] ENNEPER MINIMAL SURFACES AS BORDERLINE CASE OF MINIMAL SURFACES OF THOMSEN,G
    SCHAAL, H
    ARCHIV DER MATHEMATIK, 1973, 24 (03) : 320 - 322
  • [10] Ricci flow on cone surfaces
    Ramos, Daniel
    PORTUGALIAE MATHEMATICA, 2018, 75 (01) : 11 - 65