In Vivo Delivery of Cytoplasmic RNA Virus-derived miRNAs

被引:46
作者
Langlois, Ryan A. [1 ]
Shapiro, Jillian S. [1 ]
Pham, Alissa M. [1 ]
tenOever, Benjamin R. [1 ]
机构
[1] Mt Sinai Sch Med, Dept Microbiol, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
VESICULAR STOMATITIS-VIRUS; MICRORNA; DIFFERENTIATION; IDENTIFICATION; ATTENUATION; EXPRESSION; PROTEINS; EFFICACY; TISSUE; VSV;
D O I
10.1038/mt.2011.244
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The discovery of microRNAs (miRNAs) revealed an unappreciated level of post-transcriptional control used by the cell to maintain optimal protein levels. This process has represented an attractive strategy for therapeutics that is currently limited by in vivo delivery constraints. Here, we describe the generation of a single-stranded, cytoplasmic virus of negative polarity capable of producing functional miRNAs. Cytoplasmic RNA virus-derived miRNAs accumulated to high levels in vitro, generated significant amounts of miRNA star strand, associated with the RNA-induced silencing complex (RISC), and conferred post transcriptional gene silencing in a sequence-specific manner. Furthermore, we demonstrate that these vectors could deliver miRNAs to a wide range of tissues, and sustain prolonged expression capable of achieving measurable knockdown of physiological targets in vivo. Taken together, these results validate noncanonical processing of cytoplasmic-derived miRNAs and provide a novel platform for small RNA delivery.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 50 条
  • [1] Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells
    Baccarini, Alessia
    Chauhan, Hemangini
    Gardner, Thomas J.
    Jayaprakash, Anitha D.
    Sachidanandam, Ravi
    Brown, Brian D.
    [J]. CURRENT BIOLOGY, 2011, 21 (05) : 369 - 376
  • [2] The impact of microRNAs on protein output
    Baek, Daehyun
    Villen, Judit
    Shin, Chanseok
    Camargo, Fernando D.
    Gygi, Steven P.
    Bartel, David P.
    [J]. NATURE, 2008, 455 (7209) : 64 - U38
  • [3] Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines
    Barnes, Dwight
    Kunitomi, Mark
    Vignuzzi, Marco
    Saksela, Kalle
    Andino, Raul
    [J]. CELL HOST & MICROBE, 2008, 4 (03) : 239 - 248
  • [4] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [5] Mammalian mirtron genes
    Berezikov, Eugene
    Chung, Wei-Jen
    Willis, Jason
    Cuppen, Edwin
    Lai, Eric C.
    [J]. MOLECULAR CELL, 2007, 28 (02) : 328 - 336
  • [6] Role for a bidentate ribonuclease in the initiation step of RNA interference
    Bernstein, E
    Caudy, AA
    Hammond, SM
    Hannon, GJ
    [J]. NATURE, 2001, 409 (6818) : 363 - 366
  • [7] Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state
    Brown, Brian D.
    Gentner, Bernhard
    Cantore, Alessio
    Colleoni, Silvia
    Amendola, Mario
    Zingale, Anna
    Baccarini, Alessia
    Lazzari, Giovanna
    Galli, Cesare
    Naldini, Luigi
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (12) : 1457 - 1467
  • [8] Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC
    Castanotto, Daniela
    Sakurai, Kumi
    Lingeman, Robert
    Li, Haitang
    Shively, Louise
    Aagaard, Lars
    Soifer, Harris
    Gatignol, Anne
    Riggs, Arthur
    Rossi, John J.
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 (15) : 5154 - 5164
  • [9] MicroRNAs and reprogramming
    Chang, Hao-Ming
    Gregory, Richard I.
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (06) : 499 - 500
  • [10] TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing
    Chendrimada, TP
    Gregory, RI
    Kumaraswamy, E
    Norman, J
    Cooch, N
    Nishikura, K
    Shiekhattar, R
    [J]. NATURE, 2005, 436 (7051) : 740 - 744