Integral Representations of Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers

被引:1
作者
Dyachenko, Alexander [1 ]
Karp, Dmitrii [2 ,3 ,4 ]
机构
[1] Keldysh Inst Appl Math, Moscow 125047, Russia
[2] Holon Inst Technol, Dept Math, IL-5810201 Holon, Israel
[3] Far Eastern Fed Univ, Sch Econ & Management, Vladivostok 690922, Russia
[4] Far Eastern Fed Univ, Far Eastern Ctr Res & Educ Math, Vladivostok 690922, Russia
关键词
gauss hypergeometric function; gauss continued fraction; integral representation; JACOBI-POLYNOMIALS; 3-TERM RELATIONS; STIELTJES; ZEROS;
D O I
10.3390/math10203903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given real parameters a,b,c and integer shifts n1,n2,m, we consider the ratio R(z)=2F1(a+n1,b+n2;c+m;z)/2F1(a,b;c;z) of the Gauss hypergeometric functions. We find a formula for ImR(x +/- i0) with x>1 in terms of real hypergeometric polynomial P, beta density and the absolute value of the Gauss hypergeometric function. This allows us to construct explicit integral representations for R when the asymptotic behaviour at unity is mild and the denominator does not vanish. The results are illustrated with a large number of examples.
引用
收藏
页数:26
相关论文
共 30 条
[1]   Geometric properties of basic hypergeometric functions [J].
Agrawal, S. ;
Sahoo, S. K. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (11) :1502-1522
[2]  
Andrews G.E., 1999, ENCY MATH ITS APPL, V71
[3]  
Askitis D., 2015, THESIS COPENHAGEN
[4]  
Baricz A., 2014, J CLASS ANAL, V5, P115, DOI DOI 10.7153/JCA-05-10
[5]   THE GAUSS HYPERGEOMETRIC RATIO AS A POSITIVE REAL FUNCTION [J].
BELEVITCH, V .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (06) :1024-1040
[6]   A ONE-PARAMETER FAMILY OF PICK FUNCTIONS DEFINED BY THE GAMMA FUNCTION AND RELATED TO THE VOLUME OF THE UNIT BALL IN n-SPACE [J].
Berg, Christian ;
Pedersen, Henrik L. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (06) :2121-2132
[7]   Hypergeometric Functions at Unit Argument: Simple Derivation of Old and New Identities [J].
Cetinkaya, Asena ;
Karp, Dmitrii ;
Prilepkina, Elena .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
[8]  
Comtet L., 1974, Advanced combinatorics
[9]   Interlacing of the zeros of Jacobi polynomials with different parameters [J].
Driver, Kathy ;
Jordaan, Kerstin ;
Mbuyi, Norbert .
NUMERICAL ALGORITHMS, 2008, 49 (1-4) :143-152
[10]   Ratios of the Gauss Hypergeometric Functions with Parameters Shifted by Integers: More on Integral Representations [J].
Dyachenko, A. ;
Karp, D. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (12) :2764-2776