Rhapsody: predicting the pathogenicity of human missense variants

被引:51
|
作者
Ponzoni, Luca [1 ]
Penaherrera, Daniel A. [1 ]
Oltvai, Zoltan N. [1 ,2 ,3 ]
Bahar, Ivet [1 ]
机构
[1] Univ Pittsburgh, Dept Computat & Syst Biol, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Pathol, Pittsburgh, PA 15261 USA
[3] Univ Minnesota, Dept Lab Med & Pathol, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
DATABASE; DYNAMICS; SERVER; DBNSFP; IMPACT; GENE;
D O I
10.1093/bioinformatics/btaa127
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The biological effects of human missense variants have been studied experimentally for decades but predicting their effects in clinical molecular diagnostics remains challenging. Available computational tools are usually based on the analysis of sequence conservation and structural properties of the mutant protein. We recently introduced a new machine learning method that demonstrated for the first time the significance of protein dynamics in determining the pathogenicity of missense variants. Results: Here, we present a new interface (Rhapsody) that enables fully automated assessment of pathogenicity, incorporating both sequence coevolution data and structure- and dynamics-based features. Benchmarked against a dataset of about 20 000 annotated variants, the methodology is shown to outperform well-established and/or advanced prediction tools. We illustrate the utility of Rhapsody by in silico saturation mutagenesis studies of human H-Ras, phosphatase and tensin homolog and thiopurine S-methyltransferase.
引用
收藏
页码:3084 / 3092
页数:9
相关论文
共 50 条
  • [31] CADD: predicting the deleteriousness of variants throughout the human genome
    Rentzsch, Philipp
    Witten, Daniela
    Cooper, Gregory M.
    Shendure, Jay
    Kircher, Martin
    NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) : D886 - D894
  • [32] StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants
    Sharo, Andrew G.
    Hu, Zhiqiang
    Sunyaev, Shamil R.
    Brenner, Steven E.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (02) : 195 - 209
  • [33] Predicting functional effect of missense variants using graph attention neural networks
    Zhang, Haicang
    Xu, Michelle S.
    Fan, Xiao
    Chung, Wendy K.
    Shen, Yufeng
    NATURE MACHINE INTELLIGENCE, 2022, 4 (11) : 1017 - 1028
  • [34] Functional Properties of Missense Variants of Human Tryptophan Hydroxylase 2
    McKinney, Jeffrey A.
    Turel, Banu
    Winge, Ingeborg
    Knappskog, Per M.
    Haavik, Jan
    HUMAN MUTATION, 2009, 30 (05) : 787 - 794
  • [35] Evaluating novel in silico tools for accurate pathogenicity classification in epilepsy-associated genetic missense variants
    Montanucci, Ludovica
    Bruenger, Tobias
    Bosselmann, Christian M.
    Ivaniuk, Alina
    Perez-Palma, Eduardo
    Lhatoo, Samden
    Leu, Costin
    Lal, Dennis
    EPILEPSIA, 2024, 65 (12) : 3655 - 3663
  • [36] In silico and biological analyses of missense variants of the human biliary efflux transporter ABCC2: effects of novel rare missense variants
    Koelz, Charlotte
    Gaugaz, Fabienne Z.
    Handin, Niklas
    Schaeffeler, Elke
    Tremmel, Roman
    Winter, Stefan
    Klein, Kathrin
    Zanger, Ulrich M.
    Artursson, Per
    Schwab, Matthias
    Nies, Anne T.
    BRITISH JOURNAL OF PHARMACOLOGY, 2024, 181 (22) : 4593 - 4609
  • [37] Utility of gene-specific algorithms for predicting pathogenicity of uncertain gene variants
    Crockett, David K.
    Lyon, Elaine
    Williams, Marc S.
    Narus, Scott P.
    Facelli, Julio C.
    Mitchell, Joyce A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2012, 19 (02) : 207 - 211
  • [38] iFish: predicting the pathogenicity of human nonsynonymous variants using gene-specific/family-specific attributes and classifiers
    Wang, Meng
    Wei, Liping
    SCIENTIFIC REPORTS, 2016, 6
  • [39] AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes
    Ahmad, Rahaf M.
    Ali, Bassam R.
    Al-Jasmi, Fatma
    Al Dhaheri, Noura
    Al Turki, Saeed
    Kizhakkedath, Praseetha
    Mohamad, Mohd Saberi
    HUMAN GENOMICS, 2024, 18 (01)
  • [40] A general framework for estimating the relative pathogenicity of human genetic variants
    Kircher, Martin
    Witten, Daniela M.
    Jain, Preti
    O'Roak, Brian J.
    Cooper, Gregory M.
    Shendure, Jay
    NATURE GENETICS, 2014, 46 (03) : 310 - +